Арифметические и логические основы ЭВМ

Информатика и программное обеспечение ПЭВМ
Понятие, содержание, объект и предмет информатики Информатизация общества Большинство работающих (около 70 %) занято в информационной сфере, т. е. сфере производства информации и информационных услуг Информация и ее свойства Меры информации Семантическая мера информации Кодирование сигналов Кодирование звука Потенциальный код с инверсией при единице Модуляция сигналов Процесс сбора информации Процесс передачи информации Телетайпная связь, при которой ввод информации в телетайп может осуществляться вручную с клавиатуры и автоматизированно с перфоленты Хранение информации Системы хранения данных Система хранения данных начального уровня (рис. 1.18) Принципы информационного права Методы информационного права Основы защиты информации Классификация способов и средств защиты Арифметические и логические основы ЭВМ Десятичная система счисления Восьмеричная система счисления Метод деления Генератор тактовых импульсов генерирует последовательность электрических импульсов, их частота определяет тактовую частоту машины Многосвязный интерфейс: каждый блок ПК связан с прочими блоками своими локальными проводами. Он применяется только в простейших бытовых ПК Функциональные характеристики ПЭВМ Система шин МП Общая характеристика способов реализации Внешняя память Правила обращения с дисками Общая характеристика и состав программного Система программирования Прикладное программирование Коммуникационные ППП предназначены для организации взаимодействия пользователя с удаленными абонентами или информационными ресурсами сети Состав и структура операционной системы MS-DOS Логическая структура гибкого магнитного диска Логическая структура жесткого магнитного диска Файловая система MS-DOS Характеристика компьютерных вирусов Загрузочные вирусы Общие сведения об архивации файлов Операционная система Windows
448518
знаков
14
таблиц
55
изображений

2.1 Арифметические и логические основы ЭВМ

2.1.1 Представление данных в ЭВМ

Для оценки количества информации и упорядочения процесса ее обработки используются структурные единицы информации.

За единицу информации принимается один бит.

Бит определяет количество информации, посредством которой выделяется одно из двух альтернативных состояний. В одном бите с помощью цифр 0 и 1 может быть представлен один двоичный разряд числа или одна логическая переменная, принимающая соответственно значения "ложь" или "истина".

Последовательность битов, имеющая определенный смысл, называется полем.

Поле длиной 8 бит называется байтом.

Байт, как правило, является минимальной (неделимой) единицей информации, с которой оперирует ЭВМ. Все остальные единицы информации являются его производными (рис. 2.1).

Рис. 2.1. Структурные единицы информации

Основной структурной единицей информации, обрабатываемой ЭВМ, является машинное слово.

В современных ЭВМ длина машинного слова обычно составляет два байта. Как правило, в одном машинном слове может быть представлено либо одно число, либо одна команда. Для обеспечения требуемой точности вычислений и экономии памяти большинство ЭВМ могут оперировать также с двойным словом.

Последовательность полей, байтов или слов, имеющих одинаковый смысл, образуют массив.

Группа массивов может объединяться в сегмент. Количество информации в больших массивах оценивается с помощью производных единиц, кратных количеству байтов в степени числа два (1кбайт = 1024 байт = 210байт; 1Мбайт = 1 048 576 байт = 220байт).

Вычислительная машина оперирует с двумя видами информации: управляющей информацией и числовыми данными.

Для представления числовых данных в ЭВМ используются естественная и нормальная формы записи чисел.

В вычислительной технике принято отделять целую часть от дробной точкой. Так как в этом случае положение точки между целой и дробной частями четко определено, то такое представление чисел называют представлением с фиксированной точкой (рис. 2.2).

Рис. 2.2. Представление чисел с фиксированной точкой

Недостатком представления чисел с фиксированной точкой является их малый диапазон. Поэтому, как правило, в такой форме записывают только целые числа. В этом случае отпадает необходимость отводить поле для дробной части числа.

Максимальным по абсолютному значению целым числом, представляемым в естественной форме, будет число, определяемое по формуле (2m – 1) (рис. 2.3).

Нормальная форма записи числа имеет вид N = m × q p, где m - мантисса числа (m<1); p - порядок; q - основание системы счисления.

Порядок указывает местоположение в числе точки, отделяющей целую часть числа от дробной.

Рис. 2.3. Представление целых чисел

Такая форма представления чисел называется формой с плавающей точкой. В этом случае машинное слово делится на два основных поля. В одном поле записывается мантисса числа, во втором указывается порядок числа с учетом знака порядка (характеристика числа). Один разряд отводится для представления знака числа. Распределение разрядов в четырехбайтовом слове для случая с плавающей точкой приведено на рисунке 2.4.

Диапазон представления чисел с плавающей точкой значительно больше диапазона представления чисел с фиксированной точкой. Однако быстродействие ЭВМ при обработке чисел с плавающей точкой гораздо ниже, чем при обработке чисел с фиксированной точкой. Это объясняется тем, что при работе с плавающей точкой для каждой операции необходимо время на определение местоположения точки.

Рис. 2.4. Представление чисел с плавающей точкой

В современных ЭВМ используются обе формы представления чисел.

2.1.1.1 Представление команд в ЭВМ

Программа работы машины, определяющая процесс обработки информации в ЭВМ, состоит из последовательности команд.

Под командой ЭВМ понимается информация, обеспечивающая выработку управляющих сигналов для выполнения машиной определенного действия.

Поле команды состоит из двух частей: операционной и адресной. В операционной части указывается код операции (КОП), определяющий действие (арифметическое или логическое), которое должна выполнить машина. Адресная часть команды содержит адреса операндов (величин), участвующих в операции. Под адре-сом "А" понимается номер (цифровой код) машинного слова (или другого поля памяти ЭВМ), где записана необходимая для выполнения команды информация. Количество указываемых в команде адресов может быть различным. Соответственно числу адресов определяются следующие форматы команд: одноадресные, двухадресные, трехадресные и четырехадресные (рис. 2.5).

Рис. 2.5. Форматы команд ЭВМ

Трехадресная команда, выполняющая, например, операцию сложения, должна содержать код операции сложения и три адреса. Действия, выполняемые такой командой, определяются примерно следующей последовательностью:

1) взять число, хранящееся по первому адресу;

2) взять число, хранящееся по второму адресу, и сложить его с первым числом;

3) результат сложения записать по третьему адресу.

В случае двухадресной команды третий адрес отсутствует, и результат можно записать либо по второму адресу (с потерей информации, которая была там записана), либо оставить в сумматоре, где производилась операция сложения. Тогда для освобождения сумматора требуется дополнительная команда перезаписи числа по требуемому адресу. При сложении двух чисел, хранящихся по адресам A1 и A2,с записью результата, например, в A1 с использованием двухадресной команды, требуется уже четыре команды:

1) вызов в сумматор числа, хранящегося по адресу A1;

2) вызов числа, хранящегося по адресу A2, и сложение его с первым числом;

3) стереть число по адресу A1;

4) запись результата по адресу A1.

Таким образом, чем меньше адресность команд ЭВМ, тем большее число команд требуется для составления одной и той же программы работы машины.

Увеличивая адресность ЭВМ, приходиться увеличивать длину машинного слова, чтобы отвести в нем необходимые поля для адресной части команд. С увеличением объема памяти ЭВМ увеличивается длина поля, необходимого для одного адреса. В то же время не все команды полностью используют адресные поля. Например, для команды записи числа по заданному адресу требуется только одно адресное поле.

2.1.2 Системы счисления

Способ представления чисел посредством числовых знаков (цифр) называется системой счисления. Правила записи и действий над числами в системах счисления, используемых в цифровой вычислительной технике, определяют арифметические основы цифровых ЭВМ.

Компоненты системы счисления:

1. Основание системы счисления - количество различных цифр (символов), используемых для представления числа.

2. Алфавит системы счисления - символы и цифры, используемые для написания всех разрядов числа.

3. Правила записи и чтения чисел.

Различают два основных вида систем счисления: непозиционные и позиционные.

Непозиционные системы счисления.

Непозиционные системы счисления характеризуются тем, что значение числа, выражаемое совокупностью цифр, определяется только конфигурацией цифровых символов и не зависит от места их положения. Классическим примером непозиционной системы является римская система счисления. Например: ХIX; XXIII.

Позиционные системы счисления.

Наибольшее распространение получили позиционные системы счисления, в которых значение любой цифры определяется не только конфигурацией ее символа, но и местоположением (позицией), которое она занимает в числе.

Среди позиционных систем различают однородные и смешанные (неоднородные) системы счисления.

В однородных системах количество допустимых цифр для всех позиций (разрядов) числа одинаково. Однородной позиционной системой является общепринятая десятичная система счисления (q = 10), использующая для записи чисел десять цифр от 0 до 9.

Примером смешанной системы счисления может служить система отсчета времени, где в разрядах секунд и минут используется по 60 градаций, а в разрядах часов - 24 градации и т. д.

Любое число A, записанное в однородной позиционной системе, может быть представлено в виде суммы степенного ряда:

(2.1.)

где q - основание системы счисления; ai - цифры системы счисления с основанием q; i - номер (вес) позиции (разряда) числа.

Может быть реализовано бесконечное множество различных систем счисления. В цифровых вычислительных машинах в основном используются однородные позиционные системы. Кроме десятичной системы счисления в ЭВМ находят широкое применение системы с основанием q, являющиеся степенью числа 2, а именно: двоичная, восьмеричная, шестнадцатеричная системы счисления.

При совместном использовании различных систем счисления после записи числа может указываться основание системы, например: 347,4210; 11012; 2358 и т. д.


Информация о работе «Информатика и программное обеспечение ПЭВМ»
Раздел: Информатика, программирование
Количество знаков с пробелами: 448518
Количество таблиц: 14
Количество изображений: 55

Похожие работы

Скачать
22013
0
0

... вычислительной техники, а также принципы функционирования этих средств и методы управления ими. Из этого определения видно, что информатика очень близка к технологии, поэтому ее предмет нередко называют информационной технологией. Предмет информатики составляют следующие понятия: а) аппаратное обеспечение средств вычислительной техники; б) программное обеспечение средств вычислительной техники ...

Скачать
21932
0
4

... – набор утилит и некоторые инструментальные программы (пользовательский интерфейс). К третьему уровню относятся все остальные программы. Программы второго и третьего уровней хранятся в файлах. Программное обеспечение первого уровня является машинно-зависимым [computer-independent]. То есть для каждого микропроцессора или семейства ЭВМ набор данных программ уникален. Операционная система имеет ...

Скачать
40481
2
3

... Вы сможете работать на своем компьютере. От выбора ОС зависят также производительность вашей работы, степень защиты Ваших данных, необходимые аппаратные средства и т.д. [9] 5. Персональная ЭВМ: развернутая структура; структура программного обеспечения; выбор ПЭВМ (если возможно, то по прайс-листу некоторой фирмы). Развернутая структура (тонкие линии показывают управляющие связи, толстые – ...

Скачать
59285
1
8

... » (Zero Administration Initiative), которая будет реализована во всех следующих версиях Windows. SMS- сервер управления системами У SMS две задачи — централизовать управление сетью и уп­ростить распространение программного обеспечения и его модернизацию на клиентских системах. SMS подойдет и ма­лой, и большой сети — это инструмент управления сетью на базе Windows NT, эффективно использующий ...

0 комментариев


Наверх