1. Аналитический обзор литературы
1.1 Надежность как характеристика качества ПО
В работах [6-9] дается определение основных характеристик качества ПО, а также приводятся рекомендации по их измерению, даются метрики и критерии. В частности, дается номенклатура показателей надежности ПО. В стандарте [10] вводится шесть характеристик качества, в том числе для оценки надежности: завершенность, устойчивость к ошибкам, восстанавливаемость, согласованность, правильность работы, своевременность. Основные показатели качества ПО отображены в таблице 1.
Таблица 1 – Показатели качества ПО
Показатель | Описание |
Удобство сопровождения | ПО должно быть таким, чтобы существовала возможность его усовершенствования в ответ на изменения требований заказчика или пользователя |
Надежность | Определяется рядом характеристик, таких как безотказность, защищенность и безопасность |
Эффективность | ПО должно разумно расходовать ресурсы и обладать достаточными скоростными и временными характеристиками |
Удобство в использовании | ПО должно быть удобным в эксплуатации и быть рассчитанным на технический уровень эксплуатирующего персонала, обладать соответствующим пользовательским интерфейсом и документацией |
Данные показатели не вытекают непосредственно из того, какие действия может выполнять программный продукт. Они характеризуют поведение программы при выполнении этих действий.
Надежность — один из важнейших факторов, определяющих общую производительность и эффективность систем. В связи с этим уже на стадии проектирования системы вопросам надежности должно уделяться пристальное внимание. В этот период, когда устанавливается первоначальная взаимозависимость между характеристиками системы, затратами и графиком выполнения работ, должны быть сформулированы и требования к надежности, так как именно они в значительной мере определяют реализуемость проекта и стоимость будущей системы.
В КИС компьютер, как часть системы, обычно выполняет функции управления и должен работать в режиме реального времени. Поэтому при разработке ПО необходимо учитывать аппаратные средства, средства взаимодействия с пользователем и среду окружения [8]. Поскольку многие свойства ПО сложной системы проявляют себя только тогда, когда она собрана целиком и запущена в рабочий режим, то не учет этих факторов в совокупности может привести к построению ненадежного ПО. График соотношения надежности ПО и аппаратуры показан на рис. 1.
Рисунок 1 – Соотношение надежности программы и аппаратуры
Можно выделить три типа системных (программно–аппаратных) компонентов, склонных к отказам:
аппаратные средства системы, отказывающие либо из–за ошибок конструирования, либо из–за ошибок изготовления, либо из–за износа (старения), либо из–за эксплуатации в тяжелых недопустимых по ТУ условиях;
ПО системы, которое может отказать из–за ошибок в спецификациях, в архитектуре, в программном коде;
человеческий фактор, который своими действиями нарушает запланированную работу системы либо производит незапланированные в ПО действия.
В данной дипломной работе будут рассмотрены вопросы надежности ПО.
В [11] говорится о высокой стоимости ПО как следствие его низкой надежности. Типичное распределение стоимости ПО приведено на рис. 2.
Рисунок 2 – Типичное распределение стоимости ПО
Отсюда делается вывод, что наилучший путь сокращения стоимости ПО – в уменьшении стоимости его тестирования и, главное, сопровождения, то есть в повышении надежности.
1.2 Текущее состояние вопроса
Теория надежности как наука получила развитие применительно к сложным техническим системам. Необходимость и полезность контроля технических компонент систем и систем в целом, с целью проверки соответствия их текущих характеристик заданным, доказаны практикой. В этом плане выполнено значительное количество работ по надежности применительно к техническим системам, разработано множество моделей обеспечения разумными методами надежности сложных систем и их технической готовности.
Эти модели в ряде случаев позволяют не только оценивать показатели надежности и готовности технических систем и их компонентов, но и дают возможность предсказывать значения этих показателей на основе накопленного опыта. Кроме того, ряд моделей позволяет на основе накопленных данных высказывать предположения в отношении режимов работы, при которых наиболее часто проявляются отклонения от нормального функционирования, а также о применяемом подходе к восстановлению (ремонту) системы или ее компонентов после сбоя.
Под системой в теории надежности принято понимать совокупность подсистем или элементов, функционально объединенных в соответствии с некоторым алгоритмом взаимодействия при выполнении заданной задачи в процессе применения по назначению. Под это определение системы полностью подходит программное обеспечение. В работе [12] указывается, что исследования в области программной надежности находятся на начальной стадии своего развития.
К основным проблемам исследований надежности ПО относятся:
прежде всего – разработка методов оценки и прогнозирования надежности ПО;
определение основных факторов, влияющих на надежность ПО;
разработка методов, обеспечивающих достижение заданного уровня надежности ПО;
совершенствование методов повышения надежности ПО в процессе проектирования и эксплуатации.
Основная причина ошибок в ПО – это его сложность. Для борьбы со сложностью выделяются две концепции:
независимость;
иерархическая структура.
В работе [11] приводится правило "n ± 1": Проверка правильности фазы n проекта должна осуществляться проектировщиками (исполнителями) фаз (n+1) и (n–1). Кроме того, в [11] приводится обоснование необходимости как можно более раннего обнаружения ошибок проектирования ПО. Оно заключается в том, что стоимость исправления ошибки со временем возрастает (рис. 3б), а вероятность правильно исправить ошибку – падает (рис. 3б).
Рисунок 3 – Обоснование необходимости раннего обнаружения ошибки
При этом вероятность правильно исправить ошибку находится в противоречии с вероятностью обнаружить ошибку. Вероятность обнаружить ошибку возрастает со временем при уточнении требований заказчика и во время опытной эксплуатации. В этой связи важно решить задачу оптимизации времени обнаружения ошибки при минимальных затратах на ее исправление (см. рис. 4).
Рисунок 4 – Вероятность обнаружения ошибки и задача оптимизации
На рис.4а изображена зависимость вероятности обнаружить ошибку от времени, а на рис.4б: линия 1 – зависимость вероятности обнаружить ошибку от времени; линия 2 – вероятность исправить ошибку; также представлены области оптимального соотношения и оптимального времени для обнаружения и исправления ошибок в ЖЦ ПО.
Кроме того, дается определение тестирования и сопутствующих ему понятий. Тестирование – процесс выполнения программы с намерением найти ошибку. Валидация (испытание) – попытка найти ошибку, выполняя программу в заданной реальной среде.
Процентные частоты появления ошибок в ПО [13-15] по типам ошибок представлены в табл. 2.
Таблица 2 – Процентные частоты появления ошибок в ПО
Тип ошибки | Частота появления, % |
Не полная или ошибочная спецификация | 28 |
Отклонение от спецификации | 12 |
Пренебрежение правилами программирования | 10 |
Ошибочная выборка данных | 10 |
Ошибочная логика или последовательность операций | 12 |
Ошибочные арифметические операции | 9 |
Нехватка времени для решения | 4 |
Ошибка обработки прерываний | 4 |
Ошибка в исходных данных | 3 |
Неточная запись | 8 |
Как видно из таблицы 2, основное количество ошибок делается из–за неверной спецификации или ТЗ. Эти ошибки, в свою очередь, могут быть разделены на следующие категории:
Таблица 3 – Категории ошибок в ПО
Причина ошибки | Частота появления, % |
Ошибки в числовых значениях | 12 |
Недостаточные требования к точности | 4 |
Ошибочные символы или знаки | 2 |
Ошибки оформления | 15 |
Неправильное описание или требование к аппаратуре | 2 |
Исходные данные для разработки неполные, неточные или ошибочные | 52 |
Двусмысленность требований | 13 |
Из этих таблиц следует, на что нужно обращать особое внимание при проведении валидации и верификации ПО.
Тестирование программы ведется до тех пор, пока интенсивность программных ошибок не уменьшится до заранее заданного уровня. Ориентировочно можно исходить из того, что интенсивность программных ошибок на этапе испытаний должна быть не больше интенсивности аппаратных отказов.
Программные отказы и аппаратные отказы имеют общие признаки:
объект не выполняет заданной функции;
времена до отказов и времена устранения отказов носят случайный характер;
методы обработки статистических данных одинаковы.
И отличия:
аппаратный отказ зависит либо от времени, либо от объема выполненной работы, а программный отказ – от той функции, которую выполняет изделие под управлением программы (то есть с какой вероятностью программа выйдет на участок, который содержит ошибку);
обнаружение и устранение аппаратного отказа не означает, что такой отказ не повториться, а обнаружение и устранение программной ошибки означает, что такой отказ больше не повториться (но могут появиться новые ошибки);
программный отказ может никогда не реализоваться при данных условиях эксплуатации программы;
аппаратные отказы подразделяют на внезапные и постепенные.
Программные отказы возникают, как правило, внезапно и по природе своей не совпадают с внезапными аппаратными отказами, так как вероятность их возникновения не связана с продолжительностью работы изделия. Она связана с условной вероятностью того, что программа содержит ошибку в данной части программы и вероятности того, что изделие будет работать под управлением этой части программы.
Если аппаратная часть жестко задана и интенсивность отказов ее не меняется (только увеличивается в результате старения), то ПО имеет в процессе эксплуатации ряд модификаций с уменьшающейся (в идеале) интенсивностью отказов. Следует иметь в виду, что ПО в ПТС определяет наибольшее количество ошибок. В настоящее время около половины отказов сложных вычислительных систем обусловлено ошибками ПО, а с ростом надежности технических средств составит 90% отказов от общего числа [16].
Можно выделить 4 группы принципов обеспечения надежности:
предупреждение ошибок;
обнаружение ошибок;
исправление ошибок;
обеспечение устойчивости к ошибкам.
В работе [17] говорится, что для повышения надежности программных комплексов необходимо применять разнообразие. Этот метод предполагает реализацию одной и той же функции разными алгоритмами и с применением разных средств разработки. Также предлагается применять глубоко эшелонированную защиту. Этот метод предполагает применение многоуровневой защиты с перекрытием, т.е. с перекрывающимися назначениями защит разных уровней. Предлагается применять также смягченную деградацию систем, т.е. когда часть системы при выходе из строя другой части частично берет на себя выполнение ее функций.
Возможные действия, направленные на минимизацию ошибок и сбоев:
предотвращение ошибок за счет структурного программирования;
сокрытие информации или дозированный доступ к данным со стороны программных средств и объектов в объектно–ориентированном программировании;
отладка;
устойчивость к сбоям;
обработка исключительных ситуаций (перехват ошибок, например, деление на ноль) и локализация ошибок и сбоев;
восстановление программы после сбоя;
верификация и валидация (верификация отвечает на вопрос, правильно ли и качественно ли создана программа, а валидация (или аттестация) – на вопрос правильно ли работает программа).
В работе [13] говорится о повышении надежности ПО с помощью введения избыточности. Для повышения надежности ПО пользуются методом резервирования. Для этого разрабатывают две или более различных по алгоритмам версий программы для решения одной и той же задачи. Для этого хорошо подходит метод, когда одну и ту же программу пишут две независимые группы программистов, даже если при этом они реализуют один и тот же алгоритм (задача не должна быть при этом тривиальной). Это очень ресурсоемкий метод и поэтому редко используется на практике. Такое ПО параллельно выполняется в процессе эксплуатации. Сюда же подходит метод быстрого, но не точного решения и долгого и точного, с последующим сравнением результатов. ПО считается правильно отработавшим, если результат сравнения удовлетворяет какому–либо критерию близости результатов, например разность результатов не должна превышать некоторого значения.
Надежность ПО повышается также с помощью применения различных методов тестирования. Полное тестирование ПО объективно невозможно, поэтому обычно применяют следующие виды тестирования:
тестирование ветвей;
математическое доказательство правильности алгоритма решения задачи (в некоторых работах именно в этом смысле употребляется слово верификация). В [11] показывается, что доказательство правильности программы с помощью исчисления предикатов первого порядка не исключает ошибки в программе, так как относится к доказательству правильности внутренней спецификации на конкретный модуль. Этот метод заключается в том, что с помощью аппарата формальной математической логики пишут входные условия и выходные утверждения, а затем показывают, что, производя над входными условиями действия согласно тем, что записаны в программе, получается выходное утверждение. Часто пользуются обратным методом, т.е. идут от выходного утверждения к входному утверждению. Этот метод труден и утомителен, а многие конструкции языков программирования не поддаются доказательству с точки зрения формальной логики. Этот метод не работает, если выходное утверждение само не правильно. Тогда можно доказать, что программа приводит к этому утверждению, но это оказывается бесполезно с практической точки зрения. Тем не менее, метод имеет право на жизнь, потому что позволяет обнаруживать ошибки во внутренней логике модуля, но применим в основном к программам численных вычислений и применим к незначительному подмножеству языка программирования;
символическое тестирование (или с помощью специально подобранных тестовых наборов), еще называется статическим тестированием. Удобно при локализации ошибки, проявление которой выявлено при конкретном узком или строго заданном диапазоне входных значений;
динамическое тестирование (с помощью динамически генерируемых входных данных), что удобно при быстром тестировании во всем широком диапазоне входных параметров;
тестирование путей выполнения программы;
функциональное тестирование;
проверки по времени выполнения программы;
проверка по использованию ресурсов и стрессовое тестирование.
В работе [8] говорится, что существует 4 основные составляющие функциональной надежности программных систем:
безотказность – свойство программы выполнять свои функции во время эксплуатации;
работоспособность – свойство программы корректно (так как ожидает пользователь) работать весь заданный период эксплуатации;
безопасность – свойство программы быть не опасной для людей и окружающих систем;
защищенность – свойство программы противостоять случайным или умышленным вторжениям в нее.
В этом случае высокий уровень функциональной надежности может быть достигнут только за счет уменьшения эффективности работы программы. В работе [19] говорится, что в соответствии с ГОСТ 19.004–80 различают следующие виды работ, направленные на устранение ошибок в ПО: проверка, отладка и испытание программы.
Чем интенсивнее использование ПО, тем быстрее выявляются в нем ошибки. На рис.5 приведена зависимость числа обнаруженных ошибок от числа использующих ПО пользователей:
Рисунок 5 – Интенсивность обнаружения ошибок от интенсивности использования, где K – число пользователей, K1 > K2 > K3.
В [19] подчеркивается, что при заключительных приемо–сдаточных и сертификационных испытаниях для определения надежности ПО организуются многочасовые и многосуточные прогоны функционирования комплекса программ в реальной или имитационной внешней среде в условиях широкого варьирования исходных данных с акцентом на стрессовые ситуации.
Если интенсивное тестирование программ в течении достаточно длительного времени не приводит к обнаружению дефектов или ошибок, то создается ощущение бесполезности дальнейшего тестирования, и программа передается на эксплуатацию. Экспериментальные исследования характеристик обнаружения ошибок в сложных программах позволило оценить темп обнаружения ошибок, при котором сложные комплексы программ передаются на регулярную эксплуатацию: 0,02 – 0,05 ошибок в день на человека, т.е. специалисты выявляют только около одной ошибки каждые два месяца.
Интенсивность обнаружения ошибок ниже 0,001 ошибок в день на человека, т.е. меньше одной ошибки в год на 3–4 специалистов, по видимому, может служить эталоном высокого качества отладки и надежности для ПО обработки информации и соответствует очень высокому уровню наработки на отказ » 5 – 10 тысяч часов.
В [20] к числу основных факторов, влияющих на надежность ПО отнесены:
взаимодействие ПО с внешней средой (программно–аппаратная средства, трансляторы, ОС). Этот фактор вносит наименьший вклад в надежность ПО при современном уровне надежности аппаратуры, ОС и компиляторов;
взаимодействие с человеком (разработчиком и пользователем) (см. например метрику Холстеда);
организация ПО (проектирование, постановка задачи и способы их достижения и реализации) и качество его разработки. Этот фактор вносит наибольший вклад в надежность;
тестирование.
В соответствии с этим способы обеспечения и повышения надежности ПО могут быть следующими:
усовершенствование технологии программирования (например, формальное описание этапов программирования при помощи языка UML);
выбор алгоритмов, не чувствительных к различного рода нарушениям вычислительного процесса (использование алгоритмической избыточности);
резервирование программ – N–версионное программирование;
верификация и валидация программ с последующей коррекцией.
... . Становление рыночной экономики в России породило ряд проблем. Одной из таких проблем является обеспечение безопасности бизнеса. На фоне высокого уровня криминализации общества, проблема безопасности любых видов экономической деятельности становится особенно актуальной. Информационная безопасность среди других составных частей экономической безопасности (финансовой, интеллектуальной, кадровой, ...
... ресурсов компьютера между пользователями и задачами (система разделения времени) будет создана программная разработка планировщика задач, в котором главной целью является успеть среагировать на происходящие события в жестко заданный интервал времени (система реального времени). На основе планировщика будет реализован протокол, требующий поддержки реального времени. Для проектирования его ...
... на лазерные компакт-диски. Система моделирования Орлан ориентирована на достаточно широкий круг пользователей. В первую очередь, естественно, это администраторы вычислительных сетей предприятий, стоящие перед задачей проектирования или исследования сети. Обязательное условие, накладываемое системой – проектируемая сеть должны основываться на стандарте Ethernet. Но, так как абсолютное ...
... без применения компьютерной техники. Непрекращающееся развитие любого предприятия, учреждения или организации, а как следствие объёмов и сложности информации требует расширения компьютерных сетей и автоматизированных информационных систем. Но кроме очевидных выгод компьютерная техника несет в себе опасность здоровью и поэтому актуальной становится проблема охраны труда человека в процессе работы ...
0 комментариев