Г. — немецкий математик Лейбниц создает . первый арифмометр, позволяющий выполнять все че­тыре арифметических операции

Свойства информации. Единицы измерения количества информации
Основы языка разметки гипертекста (HTML) Базовые понятия Информационные процессы. Хранение, передача и обработка информации USB (Universal Serial Bus) — универсальная последователь­ная шина Законы логики Базовые понятия Логическая схема триггера. Использование триггеров в оперативной памяти Практическое задание. Формирование запроса на поиск данных в среде системы управления базами данных Двоичное кодирование графической информации. Растр. Пиксель. Глубина цвета Алгоритмическая структура "выбор" Базовые понятия Событийное объектно-ориентированное программирование. Событийные и общие процедуры Г. — немецкий математик Лейбниц создает . первый арифмометр, позволяющий выполнять все че­тыре арифметических операции Различные типы компьютерных вирусов: методы распространения, профилактика заражения Глобальная сеть Интернет и ее информационные сервисы (электронная почта. Всемирная паутина, файловые архивы и пр.)- Поиск информации Логические переменные и функции, их преобразование. Таблицы истинности Практическое задание. Создание, редактиро­вание, форматирование, сохранение и распечатка' Так юристы называют нас — простых смертных, в отличие от юридических лиц, т.е. организаций Основные способы защиты информации на локальном компьютере и в компьютерных сетях
225314
знаков
2
таблицы
0
изображений

1673 г. — немецкий математик Лейбниц создает . первый арифмометр, позволяющий выполнять все че­тыре арифметических операции.

1881 г. — организация серийного производства арифмометров.

Арифмометры использовались для практических вычислений вплоть до шестидесятых годов XX века.

Английский математик Чарльз Бэббидж (Charles Babbage, 1792—1871) выдвинул идею создания про­граммно-управляемой счетной машины, имеющей ариф­метическое устройство, устройство управления, ввода и печати. Первая спроектированная Бэббиджем машина, разностная машина, работала на паровом двигателе. Она заполняла таблицы логарифмов методом постоян­ной дифференциации и заносила результаты на метал­лическую пластину. Работающая модель, которую он создал в 1822 году, была шестиразрядным калькулято­ром, способным производить вычисления и печатать цифровые таблицы. Второй проект Бэббиджа — ана­литическая машина, использующая принцип про­граммного управления и предназначавшаяся для вы­числения любого алгоритма. Проект не был реализован, но получил широкую известность и высокую оцен­ку ученых.

Аналитическая машина состояла из следующих че­тырех основных частей:

— блок хранения исходных, промежуточных и ре­зультирующих данных (склад — память);

— блок обработки данных (мельница — арифме­тическое устройство);

— блок управления последовательностью вычисле­ний (устройство управления);

— блок ввода исходных данных и печати результа­тов (устройства ввода/вывода).

Одновременно с английским ученым работала леди Ада Лавлейс (Ada Byron, Countess of Lovelace, 1815— 1852). Она разработала первые программы для ма­шины, заложила многие идеи и ввела ряд понятий и терминов, сохранившихся до настоящего времени.

III. Электромеханический этап развития ВТ явля­ется наименее продолжительным и охватывает около 60 лет — от первого табулятора Г.Холлерита до пер­вой ЭВМ ENIAC.

1887 г. — создание Г.Холлеритом в США первого счетно-аналитического комплекса, состоящего из руч­ного перфоратора, сортировочной машины и табуля­тора. Одно из наиболее известных его применений — обработка результатов переписи населения в несколь­ких странах, в том числе и в России. В дальнейшем фирма Холлерита стала одной из четырех фирм, поло­живших начало известной корпорации IBM.

Начало 30-х годов XX века — разработка счетно-аналитических комплексов. Состоят из четырех основ-

ных устройств: перфоратор, контрольник, сортиров­щик и табулятор. На базе таких комплексов создают­ся вычислительные центры.

В это же время развиваются аналоговые машины.

1930 г. — В.Буш разрабатывает дифференциаль­ный анализатор, использованный в дальнейшем в во­енных целях.

1937 г. — Дж. Атанасов, К.Берри создают элект­ронную машину ABC.

1944 г. — Г.Айкен разрабатывает и создает управ­ляемую вычислительную машину MARK-1. В дальней­шем было реализовано еще несколько моделей.

1957 г. — последний крупнейший проект релейной вычислительной техники — в СССР создана PBM-I, которая эксплуатировалась до 1965 г.

IV. Электронный этап, начало которого связывают с созданием в США в конце 1945 г. электронной вы­числительной машины ENIAC.

В истории развития ЭВМ принято выделять несколько поколений, каждое из которых имеет свои отличительные признаки и уникальные характеристики. Главное отличие машин разных поколений состоит в элементной базе, ло­гической архитектуре и программном обеспечении, кро­ме того, они различаются по быстродействию, оператив­ной памяти, способам ввода и вывода информации и т.д. Эти сведения обобщены ниже в таблице.

ЭВМ пятого поколения должны удовлетворять сле­дующим качественно новым функциональным требо­ваниям:

1) обеспечивать простоту применения ЭВМ путем эффективных систем ввода/вывода информации.


ПОКОЛЕНИЯ ЭВМ ХАРАКТЕРИСТИКИ
I II III IV
Годы применения 1946-1958 1959-1963 1964-1976 1977—...
Элементная база Эл. лампа, реле Транзистор, параметров ИС, БИС СБИС
Количество ЭВМ в мире (шт.) Десятки Тысячи Десятки тысяч Миллионы
Быстродействие (операций в секунду) ДоЮ5 ДоЮ6 ДоЮ7 Более 107
Объем оперативной памяти До 64 1<б До 512 Кб До 16 Мб Более 1 6 Мб
Характерные типы ЭВМ поколения   Малые, средние, большие, специальные Большие, средние, мини- и микроЭВМ СуперЭВМ, ПК, специальные, общие, сети ЭВМ
Типичные модели поколения EDSAC, ENIAC, UNIVAC,B3CM RCA-501, IBM 7090, БЭСМ-6 IBM/ 360, PDF, VAX, ЕС ЭВМ, СМ ЭВМ ШМ/360, SX-2, IBM PC/XT/AT, PS/2, Cray
Носитель информации Перфокарта, перфолента Магнитная лента Диск Гибкий, жесткий, лазерный диск и др.
Характерное программное обеспечение Коды, автокоды, ассемблеры Языки программирования, АСУ, АСУТП ппп, СУБД, САПР, япву БЗ, ЭС, системы параллельного программирования и др.

диалоговой обработки информации с использованием ес­тественных языков, возможности обучаемости, ассо­циативных построений и логических выводов (интел­лектуализация ЭВМ);

2) упростить процесс создания программных средств путем автоматизации синтеза программ по специфи­кациям исходных требований на естественных язы­ках; усовершенствовать инструментальные средства разработчиков;

3) улучшить основные характеристики и эксплуа­тационные качества ЭВМ, обеспечить их разнообразие и высокую адаптируемость к приложениям.

УСЛОВНО все персональные компьютеры (ПК) можно разделить на две группы:

• ПК группы Brand Name, собранные в широко из­вестных фирмах, часто производителях основных бло­ков компьютера, гарантирующих высокое качество про­дукции (фирмах IBM, Compaq, Hewlett Packard и др.);

• прочие компьютеры группы No Name, сборку которых осуществляли не на фирмах, имеющих извест­ное имя.

Компьютеры Brand Name должны иметь товарные знаки, указывающие на изготовителя ПК, производите­лей его комплектующих, торгующую фирму (товарный знак дилера). Наличие товарного знака, помимо всего прочего, определяет перечень услуг, качество обслркива-ния и другие сервисные возможности, предоставляемые покупателю. ПК Brand Name стоят дороже, тем более имеющие многочисленные сертификаты. Поэтому часто приходится ограничиться выбором компьютера "прочие".

Очень важно правильно выбрать конфигурацию ком­пьютера [3]:

• тип основного микропроцессора и материнской платы;

• объем основной и внешней памяти;

• номенклатуру устройств внешней памяти;

• виды системного и локального интерфейсов;

• тип видеоадаптера и видеомонитора;

• типы клавиатуры, принтера, манипулятора, моде­ма и др.

Важнейшей характеристикой является производи­тельность компьютера. Основными факторами повы­шения производительности ПК являются:

• увеличение тактовой частоты;

• увеличение разрядности МП;

• увеличение внутренней частоты МП;

• конвейеризация выполнения операций в МП и наличие кэш-памяти команд;

• увеличение количества регистров МПП;

• наличие и объем кэш-памяти;

• возможность организации виртуальной памяти;

• наличие математического сопроцессора;

• наличие процессора OverDrive;

• пропускная способность системной шины и ло­кальной шины;

• объем ОЗУ и его быстродействие;

• быстродействие НЖМД;

• пропускная способность локального дискового интерфейса;

• организация кэширования дисковой памяти;

• объем памяти видеоадаптера и его пропускная способность;

• пропускная способность мультикарты, содержа­щей адаптеры дисковых интерфейсов и поддерживаю­щей последовательные и параллельный порты для под­ключения принтера, мыши и др.

Ссылка на материалы вопроса

1. Апокин И.А., Майстров Л.Е. История вычислитель­ной техники. М.: Наука, 1990.

2. Вершинин О.Е. За страницами учебника инфор­матики. М.: Просвещение, 1992.

3. Информатика: Учебник. 3-е перераб. изд. / Под ред. проф. Н.В. Макаровой. М.: Финансы и статисти­ка, 2001, 768 с.

3. Практическое задание по работе с электронной почтой (в локальной или глобальной компьютерной сети)

Принципы составления задания

Реализация данного вопроса на экзамене существен­но зависит от сетевых возможностей вашего компью­терного класса. Способы организации доступа к почте (через WWW, через почтовый сервер, с использовани­ем локальной сети) обсуждались довольно подробно в предыдущей публикации.

Ссылка на программное обеспечение

Как было написано в одной из предыдущих публика­ций по данному вопросу билета, при отсутствии доступа в Интернет важную роль в организации данного задания играет программное обеспечение, позволяющее органи­зовать обмен электронной почтой в классе с обычной ло­кальной сетью. В процессе подготовки данного материала было найдено очень хорошее программное решение — Courier Mail Server (почтовый сервер, версия 1.56), кото­рым хотелось бы поделиться с читателями. Это отличная бесплатная программа, написанная Романом Ругаленко и Валерием Пито, обладающая целым рядом достоинств. Во-первых, она необычайно легка в настройке и не требует особых технических знаний (по сути дела, в простейшем случае достаточно создать на сервере учетные записи пользо­вателей). Во-вторых, она работает со стандартными кли­ентскими программами типа Microsoft Outlook или The Bat, что для учебных целей очень удобно. В-третьих, после настройки и запуска данная программа-сервер больше не требует никакого внимания. Наконец, программа имеет неплохое подробное описание на русском языке. Чего еще остается желать?

На самом деле возможности программы гораздо шире, чем просто имитация работы e-mail в компью-

терном классе с локальной сетью, но их об­суждение выходит за рамки нашей сегодняш­ней прагматической публикации.

Итак, наберите адрес http://eourierms. narod.ru, скачайте программу и разархиви-руйте ее в нужный каталог на учительской машине. Запустите исполняемый файл и соз­дайте учетные записи ученических компью­теров.

Остается настроить обычным образом кли­ентское почтовое программное обеспечение, и e-mail-сообщение в классе налажено!

Примеры заданий

Задание можно сформулировать, например, так: получить отправленное учителем нака­нуне экзамена письмо и ответить на него.

Для сильного класса можно дополнить за­дание присоединением к письму вложения, усложнить работу введением менее распространенной кодиров­ки текста, потребовать пересылки копии исходного письма или ответа по заданному адресу.

Домен

И! Учетные «алией V IP фильтр *Й SMTP сервер •У РОРЗ сервер <а SMTP клиент •^ РОРЗ клиент jgP Планировщик ^ Удаленный доступ ^} Сортировщик

Учетных записей: 3 'г SMTP сервер: запущен

Порт: 25 7 РОРЗ сервер: запущен

Порт: 110

i8.03.2004 18:3"?:34 SMTPSERV

SHTP сервер запущен (порт 2£> запущен (порт 110)

I parshin | postmaster

М.М.Паршин MailVMailbox^pafshin\ Администратор М аДМ ailbox\postmaster\

Ссылка на материалы по билету

Полный текст материалов билета опубликован в "Информатике" № 20, 2002, с. 3 — 8.

БИЛЕТ № 21

1. Технология хранения, поиска и сортировки данных (базы данных, информационные системы). Табличные, иерархические и сетевые базы данных.

2. Различные типы компьютерных вирусов: ме­тоды распространения, профилактика заражения.

3. Практическое задание. Работа с папками и файлами (переименование, копирование, удаление,

поиск, сохранение на различных носителях).

1. Технология хранения, поиска и сортировки данных (базы данных, информационные системы). Табличные, иерархические и сетевые базы данных

Базовые понятия

База данных — это совокупность систематизиро­ванных сведений об объектах окружающего нас мира по какой-либо области знаний.

Системы управления базами данных — универсаль­ное программное обеспечение для работы с базами данных.

Информационная система — комплекс про­граммных и аппаратных средств, предназначенных для хранения, изменения и обработки информации, а также обеспечивающих взаимодействие с пользова­телем.

Структура и данные — две составные части БД.

Запись и ее поля — составные части данных.

Реляционные (табличные), иерархические и сете­вые базы данных.

Обязательно изложить

Большое место в применении ЭВМ занимает рабо­та с программным обеспечением для хранения и об­работки больших массивов информации — система­ми управления базами данных и всевозможными ин­формационными системами. Современные компьюте­ры способны накапливать гигантские объемы инфор­мации в любых сферах человеческой деятельности, сор­тировать и анализировать их, а затем выдавать по зап­росу человека.

Совокупность систематизированных сведений об объектах окружающего нас мира по какой-либо обла­сти знаний принято кратко называть базой данных. В широком смысле слова можно сказать, что база дан­ных есть своеобразная информационная модель пред­метной области, например, БД о работниках предприя­тия, БД в системе продажи билетов, БД документов в той или иной сфере и многие другие.

Обязательно обратите внимание на то, что в опре­делении отсутствует упоминание о компьютере. И это не ошибка — хранение систематизированных данных в виде различных картотек использовалось до появле­ния самых первых вычислительных машин. Вспомни­те, например, каталог в библиотеке — традиционные небольшие ящички, заполненные карточками со све­дениями о книгах и месте их хранения.

Помимо собственно данных, требуется специальное программное обеспечение, которое с ними работает. Такое универсальное ПО принято называть система­ми управления базами данных, или сокращенно СУБД. Именно наличие СУБД и разработанных на ее базе программ для конкретной предметной области превращает огромный объем хранимых в компьютер­ной памяти сведений в мощную справочную систему, способную производить поиск и отбор необходимой нам информации. Подобные системы принято назы­вать информационными.

Переход к компьютерному хранению информации дает много преимуществ. Они отчетливо видны, если сформулировать те функции, которые выполняет сов­ременная компьютерная система обработки данных.

• Ввод информации в БД и обеспечение его ло­гического контроля. Под логическим контролем здесь понимается проверка на допустимость вводимых дан­ных: нельзя, например, вводить дату рождения 31 июня 1057 года.

• Исправление информации (также с контролем правильности ввода).

• Удаление устаревшей информации.

• Контроль целостности и непротиворечивос­ти данных. Здесь имеется в виду, что данные, храня­щиеся в разных частях базы данных, не противоречат друг другу, например, дата поступления в школу явно не может быть позже даты ее окончания.

• Защита данных от разрушения. Помимо конт­роля за целостностью, который только что обсуждал­ся, СУБД должна иметь средства защиты данных от выключения электропитания, сбоев оборудования и других аварийных ситуаций, а также возможности последующего восстановления информации.

• Поиск информации с необходимыми свойства­ми. Одна из наиболее важных в практическом отноше­нии задач, ради которой ставятся все остальные.

• Автоматическое упорядочивание информации в соответствии с требованиями человека. Сюда относится сортировка данных, распределение их меж­ду несколькими базами и другие подобные процедуры.

• Обеспечение коллективного доступа к дан­ным. В современных информационных системах воз­можен параллельный доступ к одним и тем же дан­ным нескольких пользователей, поэтому СУБД долж­ны поддерживать такой режим.

• Защита от несанкционированного доступа. Не только ввод новой информации, но даже ее просмотр должны быть разрешены только тем пользователям, у которых есть на это права.

• Удобный и интуитивно понятный пользова­телю интерфейс.

Организация БД:

иерархическая

Характер связи между записями в БД определяет три основных типа организации баз данных: иерар­хический, сетевой и реляционный.

В иерархической базе данных записи образуют осо­бую структуру, называемую деревом (см. рисунок). При таком способе организации каждая запись может принадлежать только одному "родителю" (более пра­вильный термин — "владелец отношения"). В каче­стве примеров такого рода отношений можно привес­ти следующие: организация — [основная работа] — работник, банк — [вклад] — сберкнижка, футболь­ная команда — [хозяин поля] — матч и т.п. Отме­тим, что типичными примерами иерархического спо­соба организации является хорошо известная система вложенных каталогов в операционной системе, или так называемое "генеалогическое дерево", представляющее собой графическое представление родословной.

В сетевой базе данных связи разрешено устанавли­вать произвольным образом, без всяких ограничений, поэтому запись может быть найдена значительно бы­стрее (по наиболее короткому пути). Такая модель лучше всего соответствует реальной жизни: один и тот же человек является одновременно и работником, и клиентом банка, и покупателем, т.е. запись с инфор­мацией о нем образует довольно густую сеть сложных связей. Трудность состоит в том, что указанную орга­низацию БД, к сожалению, сложно реализовать на компьютере. '

Хотя описанные выше способы являются более уни­версальными, на практике распространен самый про­стой тип организации данных — реляционный. Слово реляционный происходит от английского relation, что значит отношение. Строгое определение отношения достаточно математизировано, поэтому на практике обычно пользуются следствием из него: поскольку отно­шения удобно представлять в виде таблиц, то говорят, что реляционные базы — это базы с табличной фор­мой организации. Их примеры имеются в любом учеб­нике, поэтому предлагаем читателям подобрать их са­мостоятельно .

Желательно изложить

Говоря о БД, нельзя обойти стороной вопрос, свя­занный с организацией в них данных. Помимо соб­ственно данных, в любой базе имеется информация о ее строении, которую чаще всего называют структу­рой. В простейшем случае структура просто указывает тип информации и объем требуемой для нее памяти. Све­дения о структуре позволяют СУБД легко рассчитывать местоположение требуемых данных на внешнем носи­теле и, следовательно, быстро получить к ним доступ.

сетевая

реляционная

Связанные между собой данные, например об од­ном человеке или объекте, объединяются в БД в еди­ную конструкцию, которая называется "запись". При этом части, образующие запись, принято называть по­лями или реже — элементами данных. Примерами полей могут служить фамилия, номер паспорта, семей­ное положение, наличие или отсутствие детей и т.д.

С появлением компьютерных сетей отпала необхо­димость хранения данных в одной машине и даже в одной стране, возникли так называемые "распреде­ленные БД".

Собственно СУБД, управляющая доступом к данным в базе, является универсальным программным обеспе­чением. Поэтому для адаптации к конкретной области и учета конкретных особенностей последней необходи­ма возможность "подстройки" программного обеспе­чения. С этой целью большинство СУБД обладают встро­енными средствами подобного рода, т.е. фактически собственным языком программирования. Заметим, что в более ранних разновидностях СУБД, например dBASE и родственных ей (FoxPro, Clipper), это было замет­но наиболее отчетливо. В современном программном обеспечении, таком, как MS Access, Paradox, Clarion, создание различных форм и отчетов во многом автома­тизировано, но тем не менее встроенные языковые сред­ства по-прежнему сохраняются.

Примечания для учителей

Если не считать последней части вопроса, то подбор материала для ответа традиционен. Мы надеемся, что приведенных здесь и в предыдущей публикации мате­риалов по типам БД читателям будет достаточно.

По нашему мнению, требовать от учеников четкие определения баз данных и информационных систем совсем не обязательно — достаточно, если они пра­вильно объяснят данные термины своими словами. Приведенные в разделе базовых понятий определе­ния даны для облегчения ориентировки в материале вопроса.

Примечания для учеников

Советуем в своем ответе обязательно отметить тот факт, что информационные системы могут быть реа­лизованы и без компьютера. После этого вполне есте­ственно рассказать о тех преимуществах, которые до­бавляет применение компьютера.

Приведенный в обязательном разделе перечень функ­ций может показаться на первый взгляд устрашаю­щим. Тем не менее он довольно легко поддается ос­мысленному запоминанию. Вспомните, как вы рабо­тали с БД на уроке: сначала вводили данные, потом исправляли ошибки ввода, после чего занимались сор­тировкой и составлением тех или иных запросов. До­полните это размышлениями о коллективном доступе к данным (на уроках такого, возможно, не было), и вы легко восстановите весь список.

Советуем также четко уяснить для себя, что харак­терно для каждого из перечисленных в билете типов БД. Это даст вам возможность легко составить послед­нюю часть ответа на вопрос: на самом деле от вас требуется лишь краткая их (2—3 предложения) ха­рактеристика.

Ссылка на материалы по вопросу

Подробные материалы опубликованы в "Информа­тике" № 15, 2002, с. 12—14.


Информация о работе «Свойства информации. Единицы измерения количества информации»
Раздел: Информатика, программирование
Количество знаков с пробелами: 225314
Количество таблиц: 2
Количество изображений: 0

Похожие работы

Скачать
45481
18
23

... подходе; Формы и методы: фронтальная, индивидуальная, объяснительно – иллюстративный, решение задач. Оборудование урока: демонстрационная презентация «Содержательный подход к определению количества информации. Единицы измерения количества информации» (презентация находится самом конспекте). Литература: 1.  Лапчик М.П. и др. Методика преподавания информатики: Учеб. пособие для студ. пед. вузов ...

Скачать
14659
4
5

... (негэнтропия). Когда неопределенность снята полностью, количество полученной информации I равно изначально существовавшей неопределенности H. При частичном снятии неопределенности, полученное количество информации и оставшаяся неснятой неопределенность составляют в сумме исходную неопределенность. Ht + It = H. По этой причине, формулы, которые будут представлены ниже для расчета энтропии H ...

Скачать
225204
6
0

... полезно учителю при подготовке рассказа на уроке. В данной публикации сделана попытка выделить тот самый минимум, который ученику необходимо включить в свой ответ на экзамене. Примечания для учеников При ответе надо быть готовым к дополнительным вопросам об обосновании тех или иных утверждений. Например, каковы максимальное и минимальное значения 8-битного целого числа со знаком и почему их ...

Скачать
257002
0
22

... быть выведены на печать. На экране рисунки могут быть статическими (неподвижными) или динамическими (движущимися). В последнее время машинная графика выделилась в самостоятельный раздел информатики с многочисленными приложениями. Средствами машинной графики создается не только печатная продукция, но и рекламные ролики на телевидении, мультфильмы. Объясним, как кодируется изображение в памяти ...

0 комментариев


Наверх