4.7. Пожарная безопасность

В современных ЭВМ очень высокая плотность размещения элементов электронных схем. В непосредственной близости друг от друга располагаются соединительные провода, коммуникационные кабели. При протекании по ним электрического тока выделяется значительное количество тепла, что может привести к повышению температуры отдельных узлов до 100°C. При этом возможно плавление изоляции проводов, их оголение, и как следствие, короткое замыкание, которое сопровождается искрением и ведет к перегрузкам элементов электронных схем, которые, перегреваясь, сгорают с искрением, поэтому следует большое внимание оказывать пожарной безопасности.

Пожарная безопасность – состояние объекта, при котором с установленной вероятностью исключается возможность возникновения и развития пожара и воздействия на людей опасных факторов пожара, а также обеспечивается защита материальных ценностей /31/.

Особое внимание к пожарной безопасности является обоснованным, так как в случае пожара будет нанесен значительный материальный ущерб (даже если в помещении находится один компьютер) и возможна угроза жизни и здоровью людей.

Источниками пожара при работе программиста с компьютером могут быть ЭВМ, электропроводка, действующие системы отопления, вентиляции и кондиционирования воздуха, бытовые приборы.

Помещение, где установлена вычислительная техника, относятся к категории “Д” – помещения, где находятся твердые горючие и трудногорючие вещества и материалы, так как:

1)     относительная влажность воздуха не превышает 75%;

2)     нет токопроводящей пыли;

3)     температура не превышает длительное время 30 °С ;

4)     отсутствует возможность одновременного прикосновения человека с имеющим соединение с землей металлическими конструкциями;

5)     отсутствие возможности прикоснуться к токоведущим частям оборудования;

6)     нет токопроводящих полов.

В соответствии с требованиями пожарной безопасности у входной двери должен находиться углекислотный огнетушитель типа ОУ-5.

В помещении может быть установлена пожарная сигнализация - тепловые извещатели с плавкими предохранителями. Это необходимо при большой концентрации средств вычислительной техники.

Для ликвидации пожара в начальной стадии в коридоре ВЦ размещается пожарный кран. В помещении, где установлена вычислительная техника, недопустимо применять воду и пенные огнетушители, так как в этом случае существует опасность повреждения или полного выхода из строя ЭВМ и другого оборудования. Для тушения пожаров на ВЦ наиболее эффективно использовать порошковые огнетушители типа ОП-5-01 из расчета один огнетушитель на 40-50 кв. м площади, но не менее двух в помещении. Устройства пожарной автоматики предназначены для обнаружения, оповещения и ликвидации пожаров.

В данном разделе дипломной работы был проведен анализ вредных и опасных производственных факторов, действующих на рабочем месте инженера-программиста. Среди них были выделены: постоянное напряжение глаз, влияние электростатических и электромагнитных полей, длительное неизменное положение тела, шум. Был проведен анализ и указан комплекс мер по пожаробезопасности и электробезопасности. Проведен расчет эргономических требований к рабочему месту инженера-программиста. Созданные условия должны обеспечивать комфортную работу. На основании изученной литературы по данной проблеме, были указаны оптимальные размеры рабочего стола и кресла, параметры рабочей поверхности, а также сформулированы предложения по улучшению параметров рабочего места. Соблюдение условий, определяющих оптимальную организацию рабочего места инженера-программиста, позволит сохранить хорошую работоспособность в течение всего рабочего дня, повысит как в количественном, так и в качественном отношениях производительность труда програм­миста, что в свою очередь будет способствовать быстрейшей разработке и отладке программного продукта.


ЗАКЛЮЧЕНИЕ

В дипломной работе был разработан и реализован математический метод, позволяющий за приемлемое время автоматически производить вейвлет-преобразование дискреного сигнала. В результате проделанной работы были решены поставленные перед разработчиком задачи:

1)    спроектированы базовые модели данных, которые могут быть использованы для дальнейшей обработки и анализа;

2)    реализован алгоритм вейвлет-анализа входного сигнала;

3)    разработано программное средство реализующее вейвлет-анализ;

4)    подсистема вейвлет-анализа интегрирована в единую систему многомасштабного анализа дискретных сигналов;

5)    подсистема предоставляет базовый набор функций для анализа входных сигналов, результаты которого могут применяться в других подсистемах.

Проведен анализ, выбор и реализация оптимальных алгоритмов вейвлет-анализа, позволяющих за приемлимое время достичь нужного результата.

Создано программное обеспечение, выполняющее многомасштабный анализ дискретных сигналов.

Посредством МАДС удается обнаружить структурные особенности сигналов, выявить и уменьшить шумы.

Созданную систему МАДС следует рассматривать как исследовательскую систему, предназначенную для выявления эмпирических закономерностей в предметной области и дальнейшую разработку в направлении большей автоматизации процесса многомасштабного анализа.


СПИСОК ЛИТЕРАТУРЫ

1.               Добеши И. Десять лекций по вейвлетам. -Ижевск: НИЦ «Регулярная и хаотическая динамика», 2001.

2.               Дремин И.М. Вейвлеты и их использование. –М: Наука – производству, 2000.

3.                Астафьева Н.М. Вейвлет-анализ: основы теории и примеры применения. –М: Фундаментальная и прикладная математика, 1998.

4.               http://www.systat.com/products/AutoSignal/
AutoSignal – Spectral and time domain signal analysis and processing software.
// Проверено 06.06.2006.

5.               http://education.softline.ru/product.asp?catalog_name=SoftLine&category_name=&product_id=Software-13545&view=tech_info_ru&cookie%5Ftest=1
AutoSignal – пакет для проведения автоматизированного анализа сигналов.
// Проверено 06.06.2006.

6.               http://www.mathworks.com/products/wavelet/
Wavelet Toolbox 3.0.4. // Проверено 06.06.2006.

7.               http://matlab.exponenta.ru/wavelet/index.php
Wavelet ToolBox - обработка сигналов и изображений. //Проверено 06.06.2006.

8.                Новиков И.Я. Основные конструкции всплесков. –М: Успехи математических наук, 1998.

9.                Петухов А.П. Введение в теорию базисов всплесков. –М: Радио и связь, 1995.

10.             Строустрап Б. Язык программирования С++. – М.: Мир, 1994. – 278 с.

11.              Кнут Д. Искусство программирования для ЭВМ. - М.: Мир, 1976. – Т. 1-3.

12.             Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. - М.: Наука, 1979. – 720с.

13.             Эйнджел Э. Интерактивная компьютерная графика. – М.: Вильямс, 2001. – 592 с.

14.             ГОСТ 19.001-77 ЕСПД. Общие положения. -М.: Издательство стандартов, 1989.

15.              ГОСТ 19.701-90 ЕСПД. Схемы алгоритмов, программ, данных и систем. Условные обозначения и правила выполнения. -М.: Издательство стандартов, 1991.

16.              ГОСТ 19.105-78 ЕСПД. Общие требования к программным документам. -М.: Издательство стандартов, 1989.

17.              ГОСТ 19.401-78 ЕСПД. Текст программы. Требования к содержанию и оформлению. -М.: Издательство стандартов, 1989.

18.              ГОСТ 19.404-79 ЕСПД. Пояснительная записка. Требования к содержанию и оформлению. -М.: Издательство стандартов, 1989.

19.              ГОСТ 19.504-79 ЕСПД. Руководство программиста. Требования к содержанию и оформлению. -М.: Издательство стандартов, 1989.

20.              ГОСТ 19.505-79 ЕСПД. Руководство оператора. Требования к содержанию и оформлению. -М.: Издательство стандартов, 1989.

21.             Почерняев С.В., Килин И.В. Методические указания по дипломному проектированию. – Ижевск: Издательство ИжГТУ, 1994.

22.             Технико-экономическое обоснование дипломных проектов. – Ижевск: Издательство ИжГТУ, 2001.

23.             Налоговый кодекс РФ. – М.: ГроссМедиа Ферлаг, 2004.

24.             ГОСТ 12.0.002-80 Система стандартов безопасности труда. Термины и определения – М.: Издательство стандартов, 1984.

25.             ГОСТ 12.1.003-89 Система стандартов безопасности труда. Шум. Общие требования безопасности. -М.: Издательство стандартов, 1989.

26.             СанПиН 2.2.2.542-96 Гигиенические требования к видеодисплейным терминалам, персональным электронным вычислительным машинам и организации работы. -М.: Издательство стандартов, 1976.

27.             ГОСТ 12.1.029-80 Система стандартов безопасности труда. Средства и методы защиты от шума. Классификация. -М.: Издательство стандартов, 1980.

28.             Руководства по проектированию производственных помещений и промышленных предприятий. -М.: Стройиздат, 1981.

29.             СанПиН 2.2.4.548-96 Гигиенические требования к микроклимату производственных помещений. -М.: Издательство стандартов, 1976.

30.             СНиП 23-05-95 Нормы проектирования естественного и искусственного освещения. -М.: Издательство стандартов, 1995.

31.             ГОСТ 12.1.004-91 Система стандартов безопасности труда. Пожарная безопасность. Общие требования. -М.: Издательство стандартов, 1992.


ПРИЛОЖЕНИЕ 1

ТЕКСТ ПРОГРАММЫ

П. 1.1. ТЕКСТ МОДУЛЯ SIGNAL.CS

using System;

using System.Collections;

using System.Drawing;

using System.IO;

using System.Windows.Forms;

using MultiScAn.Common.Attributes;

using MultiScAn.Common.Interfaces;

using MultiScAn.Common.Utils;

namespace MultiScAn.Common.Classes

{

public delegate void CommonHandler();

/// <summary>

/// Summary description for Signal.

/// </summary>

[Filter("Текстовый файл данных (*.dat)|*.dat")]

public class Signal : IData, ICleanable, IEnumerable

{

private int[] _data = new int[0];

private int _minValue = int.MaxValue;

private int _maxValue = int.MinValue;

private Bitmap _bitmap;

public Signal()

{

}

public void Rebuild(int size)

{

_data = new int[size];

_minValue = int.MaxValue;

_maxValue = int.MinValue;

_bitmap = null;

}

public void Load(string fileName)

{

int min = int.MaxValue, max = int.MinValue;

ArrayList list = new ArrayList();

using(StreamReader reader = File.OpenText(fileName))

{

string str = String.Empty;

while((str = reader.ReadLine()) != null)

{

str = str.Trim();

if (str != String.Empty)

{

string [] vals = str.Split(' ', '\t');

foreach(string val in vals)

{

int iVal = int.Parse(val);

DataUtil.Sort(iVal, ref min, ref max);

list.Add(iVal);

}

}

}

}

if (list.Count == 0) throw new NotSupportedException();

_data = (int[]) list.ToArray(typeof(int));

_minValue = min; _maxValue = max;

_bitmap = null;

if(OnLoad != null) OnLoad();

}

public event CommonHandler OnLoad;

public void Save(string fileName)

{

using(StreamWriter writer = File.CreateText(fileName))

{

foreach(int s in _data)

{

writer.WriteLine(s);

}

}

if (OnSave != null) OnSave();

}

public event CommonHandler OnSave;

public Bitmap Bitmap

{

get

{

if (_bitmap == null)

{

int min = _minValue > 0 ? 0 : -_minValue;

int max = _maxValue < 0 ? 0 : _maxValue;

Graphics g = null;

_bitmap = new Bitmap(2 * _data.Length, min + max);

g = Graphics.FromImage(_bitmap);

g.FillRectangle(new SolidBrush(Color.White), g.ClipBounds);

for(int i = 1; i <= _data.Length; i++)

{

g.DrawLine(new Pen(Color.Black),

new Point(2*i-1 , max),

new Point(2*i-1, max - _data[i-1]));

}

}

return _bitmap;

}

}

public void Clean()

{

_data = new int[0];

_minValue = int.MaxValue;

_maxValue = int.MinValue;

}

public bool IsEmpty

{

get { return _data.Length == 0; }

}

public int this[int index]

{

get { return _data[index]; }

set { sorter = _data[index] = value; }

}

private int sorter

{

set

{

DataUtil.Sort(value, ref _minValue, ref _maxValue);

}

}

public IEnumerator GetEnumerator()

{

return _data.GetEnumerator();

}

public int Length

{

get { return _data.Length; }

}

public void CopyTo(int[] arr)

{

_data.CopyTo(arr, 0);

}

}

}

П. 1.2. ТЕКСТ МОДУЛЯ WAVELET.CS

using MultiScAn.Common.Classes;

namespace MultiScAn.WaveletAnalysis

{

/// <summary>

/// Summary description for Wavelet.

/// </summary>

public class Wavelet : Signal

{

public Wavelet()

{

}

public double[] Resample(int size)

{

double[] res = new double[size];

for (int i = 0, offs = 0; i < size; i++, offs += base.Length)

{

res[i] = 0.0;

for (int j = 0; j < base.Length; j++)

{

res[i] += base[(offs + j)/size];

}

res[i] /= base.Length;

}

return res;

}

}

}

П. 1.3. ТЕКСТ МОДУЛЯ RESULT.CS

using System;

using System.Collections;

using System.Drawing;

using System.IO;

using MultiScAn.Common.Attributes;

using MultiScAn.Common.Classes;

using MultiScAn.Common.Interfaces;

using MultiScAn.Common.Utils;

namespace MultiScAn.WaveletAnalysis

{

/// <summary>

/// Summary description for ResultUtil.

/// </summary>

[Filter("Результат вейвлет анализа (*.war)|*.war")]

public class Result : IResult

{

double [,] _Data = new double[0, 0];

private Bitmap _bitmap;

private double _minValue = double.MaxValue;

private double _maxValue = double.MinValue;

private Spectrum _spectrum = new Spectrum();

public Result()

{

}

internal void Rebuild(int height, int width)

{

_bitmap = null;

_Data = new double[height, width];

_minValue = double.MaxValue;

_maxValue = double.MinValue;

}

public int Width

{

get { return _Data.GetLength(1); }

}

public int Height

{

get { return _Data.GetLength(0); }

}

public double this[int i, int j]

{

get { return _Data[i, j]; }

set { sorter = _Data[i, j] = value; }

}

public double MinValue

{

get { return _minValue; }

}

public double MaxValue

{

get { return _maxValue; }

}

public void Load(string fileName)

{

double min = double.MaxValue, max = double.MinValue;

double [,] data;

using(StreamReader reader = File.OpenText(fileName))

{

int width = int.Parse(__read(reader));

int height = int.Parse(__read(reader));

data = new double[width, height];

for(int i = 0; i < width; i++)

{

for(int j = 0; j < height; j++)

{

DataUtil.Sort(data[i, j] = double.Parse(__read(reader)), ref min, ref max);

}

}

}

_Data = data;

_minValue = min;

_maxValue = max;

_bitmap = null;

if(OnLoad != null) OnLoad();

}

private string __read(StreamReader reader)

{

string str = reader.ReadLine();

if (str == null) throw new NotSupportedException();

return str;

}

public event CommonHandler OnLoad;

public void Save(string fileName)

{

using(StreamWriter writer = File.CreateText(fileName))

{

int height = _Data.GetLength(0), width = _Data.GetLength(1);

writer.WriteLine(height);

writer.WriteLine(width);

for(int i = 0; i < height; i++)

{

for(int j = 0; j < width; j++)

{

writer.WriteLine(_Data[i, j]);

}

}

}

if (OnSave != null) OnSave();

}

public event CommonHandler OnSave;

public Bitmap Bitmap

{

get

{

if (_bitmap == null)

{

if (_spectrum.Length == 0) _spectrum.LoadDefault();

_bitmap = new Bitmap(Width, Height);

double k = (_spectrum.Length - 1) / (_maxValue - _minValue);

for(int i = 0; i < Height; i++)

{

for(int j = 0; j < Width; j++)

{

_bitmap.SetPixel(j, i, _spectrum[(int) (k *(_Data[i, j] - _minValue))]);

}

}

}

return _bitmap;

}

}

public void FormRow(Signal x, double[] y, int row)

{

int result_size = 2 * x.Length,

max_offset = x.Length - y.Length,

null_offset = Math.Min(y.Length - 1, result_size);

if (result_size != _Data.GetLength(1)) throw new ArgumentOutOfRangeException();

for (int i = 0; i < null_offset; i++)

{

this[row, i] = 0.0;

}

if (null_offset == result_size) return; // зачем делать лишние движения, если и так уже всё забито нулями

for (int i = 0; i <= max_offset; i++)

{

double sum = 0.0;

for (int j = 0; j < y.Length; j++)

{

sum += x[i+j] * y[j];

}

this[row, 2*i+y.Length-1] = sum;

this[row, 2*i+y.Length] = 0.0;

}

for (int i = result_size - null_offset; i < result_size; i++)

{

this[row, i] = 0.0;

}

}

public Spectrum Spectrum

{

get { return _spectrum; }

set { _spectrum = value; }

}

private double sorter

{

set

{

DataUtil.Sort(value, ref _minValue, ref _maxValue);

}

}

}

}


П. 1.3. ТЕКСТ МОДУЛЯ ANALYZER.CS

using System;

using System.Diagnostics;

using MultiScAn.Common.Classes;

using MultiScAn.Common.Interfaces;

namespace MultiScAn.WaveletAnalysis

{

/// <summary>

/// Summary description for Analysis.

/// </summary>

public class Analyzer : IAnalyzer

{

public const double DEFAULT_SCALE = 1.0;

private Wavelet _Wavelet = new Wavelet();

private Signal _Data = new Signal();

public Analyzer()

{

}

// public Analyzer(Wavelet wavelet, Wavelet data)

// {

// _Wavelet = wavelet;

// _Data = data;

// }

public Wavelet Wavelet

{

get { return _Wavelet; }

set { _Wavelet = value; }

}

public Signal Data

{

get { return _Data; }

set { _Data = value; }

}

public void Analyze(IResult result)

{

Analyze(DEFAULT_SCALE, (Result)result);

}

public void Analyze(double scale, Result result)

{

if (_Wavelet == null) throw new ArgumentNullException("Wavelet");

if (_Data == null) throw new ArgumentNullException("Data");

int size = (int)(_Wavelet.Length * scale);

// Wavelet [] result = new Wavelet[size];

result.Rebuild(size, 2 * _Data.Length);

for (int i = 0; i < size; i++)

{

result.FormRow(_Data, _Wavelet.Resample(size - i), i);

// Trace.WriteLine(String.Format("{0} / {1}", i, size));

}

}

}

}


ПРИЛОЖЕНИЕ 2

РУКОВОДСТВО ПРОГРАММИСТА

П.2.1. НАЗНАЧЕНИЕ ПРОГРАММЫ

Программа вейвлет-анализа имеет идентификатор WaveletAnalysis. Программа WaveletAnalysis выполняет следующие функции:

1)     загрузка и сохранение дискретных сигналов (включая вейвлеты);

2)     расчёт, загрузка и сохранение результатов вейвлет-анализа;

3)     предоставление интерфейсов для подсистемы визуализации данных МАДС;

Программа WaveletAnalysis входит в состав системы МАДС в качестве динамически загружаемой библиотеки. Система МАДС реализует многомасштабный анализ дискретных сигналов методами вейвлет-анализа и структурной индексации.

П.2.2. УСЛОВИЯ ВЫПОЛНЕНИЯ ПРОГРАММЫ

Программа WaveletAnalysis предъявляет следующие требования к техническим средствам:

1)     стандартный x86-совместимый ПК;

2)     тактовая частота процессора не менее 900 МГц;

3)     объем оперативной памяти не менее 128 Мб;

4)     разрешение экрана монитора не менее 1024x768.

Программа WaveletAnalysis предъявляет следующие требования к программным средствам:

1)     операционная система семейства Windows (Windows NT/2000/XP);

2)     .NET Framework версии 1.1;


П.2.3. ХАРАКТЕРИСТИКА ПРОГРАММЫ

Программа WaveletAnalysis входит в состав системы МАДС в качестве динамически загружаемой библиотеки.

В состав программы входят следующие файлы, необходимые для ее функционирования:

1)     MultiScAn.Visualization.exe – исполняемый модуль подсистемы визуализации данных;

2)     MultiScAn.Common.dll – библиотека, содержащая базовые классы и интерфейсы необходимые для функционирования системы МАДС;

3)     MultiScAn.WaveletAnalysis.dll – библиотека, реализующая вейвлет-анализ;

4)     DialCol.txt – файл цветовой шкалы, используемой для визуализации результатов вейвлет-анализа.

Программа является интерактивной, т.е. требующей взаимодействия с пользователем, поэтому время выполнения отдельных этапов обработки не превышает 0.5 с. при использовании требуемых технических средств.

П.2.4. ОБРАЩЕНИЕ К ПРОГРАММЕ

Для вызова программы необходимо запустить на выполнение файл MultiScAn.Visualization.exe и выбрать закладку «Вейвлет-анализ».

Интерфейс программы WaveletAnalysis представлен на рис. П.2.1.

Описание панели инструментов программы WaveletAnalysis представлено в табл. П.2.1.


Интерфейс программы WaveletAnalysis

Рис. П.2.1

Таблица П.2.1

Панель инструментов программы WaveletAnalysis

Кнопка на панели инструментов Значение

Выход из приложения

Загрузка анализируемого сигнала из текстового файла

Загрузка вейвелета из текстового файла

Вейвлет-анализ сигнала

Сохранение результатов вейвлет-анализа в текстовый файл

Настройка программы

Просмотр диалога «О программе»

Для загрузки, сохранения или сохранения изображения анализируемого сигнала, вейвлета или результата вейвлет-анализа в соответсвующей закладке («Данные», «Вейвлет» или «Результат») необходимо выбрать соответсвующий пункт контекстного меню («Загрузить», «Сохранить» или «Сохранить изображение…») или нажать на соответствующую кнопку панели инструментов (см. табл. П.2.1).

В стандартном диалоге открытия файла необходимо выбрать нужный файл. В итоге на соответсвующей закладке («Данные», «Вейвлет» или «Результат») появляется графическое изображение анализируемого сигнала, вейвлета или результата вейвлет-анализа.

П.2.5. ВХОДНЫЕ И ВЫХОДНЫЕ ДАННЫЕ

Входной информацией являются текстовые файлы с расширением «.dat» (от англ. data – данные), содержащие данные исходного сигнала.

Структура входного файла «.dat»:

где  – количество данных;

,  – значение сигнала, целое число.

Выходной информацией для данной задачи являются текстовые файлы с расширением «.war» (от англ. wavelet analysis result – результат вейвлет-анализа), содержащие результаты вейвлет-анализа.


Структура выходного файла «.war»:

где  – ширина растра;

 – высота растра;

, ,  – результат вейвлет-анализа, вещественное число.

П.2.6. СООБЩЕНИЯ ПРОГРАММИСТУ

Сообщения, выдаваемые программисту, приведены в табл. П.2.2.

Таблица П.2.2

Сообщения программисту

Сообщение Действие программиста
Неверный формат входной строки Выбранный файл данных имеет некорректный формат. При необходимости попытаться загрузить другой файл данных
Невозможно найти файл «Resources\DialCol.txt» Результат вейвлет-анализа успешно рассчитан или загружен, но не может быть отображен в связи с тем, что не найден файл цветовой шкалы. Необходимые действия описаны в приложении 2.7

Результаты загрузки и вычислений выводятся в интерфейсном элементе так, как это приведено на рис.П.2.2 и П.2.3.


Результат загрузки вейвлета

Рис. П.2.2

Результат вейвлет-анализа сигнала

Рис. П.2.3


П.2.7. НАСТРОЙКА ПРОГРАММЫ

Для функционирования программы WaveletAnalysis необходимо установить .NET Framework версии 1.1.

Визуализация результатов вейвлет-анализа требует наличие файла цветовой шкалы. Для этого необходимо создать каталог Resources в каталоге с программой и поместить в него файл DialCol.txt.


ПРИЛОЖЕНИЕ 3

РУКОВОДСТВО ОПЕРАТОРА

П.3.1. НАЗНАЧЕНИЕ ПРОГРАММЫ

Программа вейвлет-анализа имеет идентификатор WaveletAnalysis. Программа WaveletAnalysis выполняет следующие функции:

1)     загрузка и сохранение дискретных сигналов (включая вейвлеты);

2)     расчёт, загрузка и сохранение результатов вейвлет-анализа;

3)     предоставление интерфейсов для подсистемы визуализации данных МАДС;

Программа WaveletAnalysis входит в состав системы МАДС в качестве динамически загружаемой библиотеки. Система МАДС реализует многомасштабный анализ дискретных сигналов методами вейвлет-анализа и структурной индексации.

П.3.2. УСЛОВИЯ ВЫПОЛНЕНИЯ ПРОГРАММЫ

Программа WaveletAnalysis предъявляет следующие требования к техническим средствам:

1)     стандартный x86-совместимый ПК;

2)     тактовая частота процессора не менее 900 МГц;

3)     объем оперативной памяти не менее 128 Мб;

4)     разрешение экрана монитора не менее 1024x768.

Программа WaveletAnalysis предъявляет следующие требования к программным средствам:

1)     операционная система семейства Windows (Windows NT/2000/XP);

2)     .NET Framework версии 1.1;

3)     наличие в каталоге программы файлов MultiScAn.Visualization.exe, MultiScAn.Common.dll, MultiScAn.WaveletAnalysis.dll и Resources\DialCol.txt.


П.3.3. ВЫПОЛНЕНИЕ ПРОГРАММЫ

Для вызова программы необходимо запустить на выполнение файл MultiScAn.Visualization.exe и выбрать закладку «Вейвлет-анализ».

Интерфейс программы WaveletAnalysis представлен на рис. П.3.1.

Интерфейс программы WaveletAnalysis

Рис. П.3.1

Описание панели инструментов программы WaveletAnalysis представлено в табл. П.3.1.

Для загрузки, сохранения или сохранения изображения анализируемого сигнала, вейвлета или результата вейвлет-анализа в соответсвующей закладке («Данные», «Вейвлет» или «Результат») необходимо выбрать соответсвующий пункт контекстного меню («Загрузить», «Сохранить» или «Сохранить изображение…») или нажать на соответствующую кнопку панели инструментов (см. табл. П.3.1).

В стандартном диалоге открытия файла необходимо выбрать нужный файл. В итоге на соответсвующей закладке («Данные», «Вейвлет» или «Результат») появляется графическое изображение анализируемого сигнала, вейвлета или результата вейвлет-анализа.


Таблица П.3.1

Панель инструментов программы WaveletAnalysis

Кнопка на панели инструментов Значение

Выход из приложения

Загрузка анализируемого сигнала из текстового файла

Загрузка вейвелета из текстового файла

Вейвлет-анализ сигнала

Сохранение результатов вейвлет-анализа в текстовый файл

Настройка программы

Просмотр диалога «О программе»

П. 3.4. СООБЩЕНИЯ ОПЕРАТОРУ

Сообщения, выдаваемые оператору, приведены в табл. П.3.2.

Таблица П.3.2

Сообщения оператору

Сообщение Действие программиста
Неверный формат входной строки Выбранный файл данных имеет некорректный формат. При необходимости попытаться загрузить другой файл данных
Невозможно найти файл «Resources\DialCol.txt» Результат вейвлет-анализа успешно рассчитан или загружен, но не может быть отображен в связи с тем, что не найден файл цветовой шкалы. Необходимые действия описаны в приложении 2.7

Результаты вычислений выводятся в интерфейсном элементе так, как это приведено на рис. П.3.2.

Результат вейвлет-анализа сигнала

Рис. П.3.2


Информация о работе «Система многомасштабного анализа дискретных сигналов. Подсистема вейвлет-анализа»
Раздел: Информатика, программирование
Количество знаков с пробелами: 88503
Количество таблиц: 15
Количество изображений: 14

0 комментариев


Наверх