3. Определение расхода лома на плавку

Металлический лом является важнейшим, после жидкого чугуна, исходным железосодержащим материалом конвертерной плавки. Он выполняет роль основного охладителя процесса окислительного рафинирования, благодаря которому обеспечивается необходимая температура металла. Масса лома должна определяться из условий баланса тепла конвертерной плавки. Избыток тепла процесса расходуется на переработку эквивалентной массы лома.

Однако лом вносит химические элементы, участвующие в окислительном рафинировании, как и элементы чугуна. Поэтому величина массы лома используется в начале расчета в уравнениях баланса элементов, а правильность выбора ее может быть установлена только в конце расчета при составлении теплового баланса плавки. Критерием оценки может служить рассчитанное значение температуры металла.

Для начала расчета можно было бы выбрать расход лома произвольно из обычно наблюдаемого на практике интервала значений (20…25%), провести все расчеты до определения температуры металла, сравнить ее с требуемой и вернуться к началу расчета, скорректировать величину расхода лома и расчет повторить. Успех расчета (кратность повторения) зависит от удачного первоначального выбора.

Для быстрого приближения используют эмпирические соотношения между массой лома и различными известными параметрами плавки. Их эффективность будет зависеть от того, на сколько условия конкретной плавки соответствуют условиям, при которых получены расчетные зависимости. Можно использовать следующую упрощенную формулу, полученную по усредненным параметрам для условий Магнитогорского конвертерного цеха, когда лом является единственным охладителем:

Gл = 17,85 + 4,2·([C]ч - 4,0) + 7,6·([Si]ч – 0,5) + 0,034·(tч – 1330) + 17,0·(0,12 – [С]м) + 0,049·(1650 – tм),

где Gл – расход лома на плавку, % (кг/100 кг металлошихты);

[С]ч, [Si]ч – соответственно содержание углерода и кремния в чугуне, %;

tч, tм – соответственно температура чугуна и металла, °С.

Все величины, входящие в эту формулу, известны. Поэтому:

Gл = 17,85 + 4,2· (4,0–4,0) + 7,6· (0,6–0,5) + 0,034· (1400–1330) + 17,0·(0,12–0,03) + 0,049· (1650–1656,6) = 23%.

В качестве твердого окислителя, играющего роль дополнительного охладителя, используются окатыши. Оценим охлаждающую способность этого материала:

σто = 0,062·Fe – 0,014·(FeO)то – 0,633,

где σто – коэффициент эквивалентности твердого окислителя как охладителя

по отношению к лому, кг/кг;

Fе – содержание железа в твердом окислителе, %;

(FeO)то – содержание FeO в твердом окислителе, %.

Принимаем: Fe = 63,0%; (FeO)то= 1,0%.

Тогда σто = 0,062·63,0 – 0,014·1,0 – 0,633 = 3,26 кг/кг.

Следовательно, 1 кг окатышей по охлаждающему эффекту эквивалентен 3,26 кг лома.

На плавку расходуется 0,6% окатышей (или 0,6 кг на 100 кг металлошихты). Значит, расход лома должен быть уменьшен в соответствии с коэффициентом эквивалентности на 0,6 · 3,26 = 1,96 кг.

Таким образом, ориентировочный расход лома на плавку составит:

23 – 1,96 = 21 кг.


4. Расчет окисления примесей металлической шихты

Для решения этой задачи сначала необходимо определить средний химический состав металлической шихты и остаточные содержания примесей в металле в конце продувки.

Средний химический состав металлической шихты определяем в соответствии с расходами чугуна и лома на плавку и их химическим составом. Так как расход лома был определен ранее, то расход чугуна (Gч) составит:

Gч = 100 – 21 = 79 кг.

Химический состав чугуна указан в таблице 3. Оценим состав металлического лома. Очевидно, он зависит от того, отходы каких марок сталей составляют лом. Часто сведения об этом носят приблизительный характер. Можно считать, что лом имеет химический состав, близкий к среднему составу сталей, выплавляемых отечественной металлургией в наибольшем количестве – низкоуглеродистых обыкновенного качества. В этом случае лом может содержать 0,1…0,2% С; 0,20… 0,25% Si; 0,4… 0,5% Мn; менее 0,04% Р и S.

Принимаем (таблица3): [С]л= 0,1%; [Si]л = 0,2%; [Mn]л= 0,5%; [Р]л = 0,04%; [S]л – 0,04%.

Таблица 3 – Химический состав металлических шихтовых материалов

Материал Массовая доля элементов%
С Si Mn P S

Чугун жидкий

Лом металлический

4,0

0,1

0,6

0,2

0,7

0,5

0,15

0,4

0,025

0,04

Следует иметь в виду, что в производственных условиях вместе с жидким чугуном в конвертер попадает так называемый миксерный шлак. Это и часть доменного шлака на поверхности чугуна, и материал футеровки миксеров (передвижных или стационарных), и продукты окисления примесей чугуна, и др. Миксерный шлак обычно содержит много кислотных оксидов и серы, а поэтому является нежелательным материалом при производстве стали.

Технологией выплавки стали предусматривается удаление миксерного шлака с поверхности чугуна перед заливкой его в конвертер. Тем не менее, часть шлака остается и принимает участие в формировании конвертерного шлака. Необходимо учитывать количество и состав миксерного шлака при расчетах плавки. Обычно бывает известна суммарная масса чугуна и шлака, так как их взвешивают в заливочном ковше общей массой. Поэтому количество миксерного шлака оценивают в процентах к массе чугуна. До удаления шлака из заливочного ковша это количество составляет 0,5…2,0%, а после скачивания – 0,2…1,0% к массе чугуна. Для расчета принимаем Gмш = 0,5%. Однако будем учитывать наличие миксерного шлака только при формировании конвертерного шлака, пренебрегая его влиянием на средний состав металлошихты.

Подобное замечание относится и к качеству металлического лома. Лом всегда частично окислен с поверхности и поступает в конвертер с некоторым количеством мусора: песком (основной компонент – SiO2) и глиной (Аl2О3). Окисленность и замусоренность лома оценивают в процентах к массе лома, что составляет в пределах 0,5…2,0% для каждого. Относительно небольшой расход лома на плавку позволяет пренебречь влиянием окалины и мусора в ломе при упрощенных расчетах.

С учетом этих замечаний расчет среднего химического состава шихты представлен в таблице 4.

Определим остаточное содержание примесей в металле в конце продувки. Содержание углерода было установлено ранее: [C]м=0,03%.

Кремний при выплавке стали в конвертере с основной футеровкой окисляется практически полностью, поэтому [Si]м = 0%.

Марганец, фосфор и сера во время продувки частично удаляются из металла. Степень их удаления зависит от условий ведения плавки (состава шлака и металла, их температуры) и момента окончания продувки. Обычно наблюдаемые значения степени удаления элементов приведены в таблице 5.

Таблица 5 – Степень удаления элементов (%) из металла за время продувки в кислородном конвертере

Химический элемент Содержание углерода в металле в конце продувки, %
<0,10 0,10…0,25 > 0,25

Марганец

Фосфор

Сера

80…85

90…95

45…50

75…80

85…90

40…45

70…75

80…85

35…40

Для условий примера расчета при [С]м = 0,03% в соответствии с данными таблицы принимаем степень удаления марганца 83%, фосфора 93% и серы 47%.

Тогда:

[Mn]м = 0,66 (100 – 83)/100 = 0,111 кг;

[Р]м = 0,128·(100 – 93)/100 = 0,0089 кг;

[S]м = 0,027·(100 – 47)/100 = 0,014 кг.

Расчет окисления примесей шихты представлен в таблице 6.

Таблица 6 – Расчет окисления примесей шихты

Расчетный показатель С* Si Mn P

S**

Все-

го

Все-го Окисляет-ся до СО

Окисляется до СО2

Содержит-ся в шихте, кг 3,18 - - 0,51 0,66 0,128 0,027 -
Остается после продувки, кг 0,03 - - 0,000 0,111 0,0089 0,014 -
Удаляется при продувке, кг 3,15

3,15·0,9

=2,84

3,15·0,1

=0,31

0,51 0,55 0,119 0,013 4,34

Требуется кислорода, кг

м3***

-

2,84·16/12=

3,79

2,65

0,31·2·16/12= 0,83

0,58

0,51·2·

16/28=

0,58

0,41

0,55·

16/ 55 =

0,16

0,11

0,119· 5·16/ (2·31)= 0,153

0,107

5,51

3,86

Образуется оксидов, кг - 6,63 1,14 1,09 0,71 0,272 0,013 9,855

*) Принимаем, что 90% углерода, удаляемого при продувке, окисляется до СО, а 10% – до СО2, остаточные содержания углерода в металле в% и кг отличаются несущественно, так как выход жидкого металла обычно составляет 90…92%.

**) Принимаем, что вся удаляемая из металла сера переходит в шлак, пренебрегая малым количеством ее окисления до газообразных продуктов.

***) Пересчёт в м3 производится из условия, что 32 кг кислорода занимают объем 22,4 м3.


Информация о работе «Определение основных параметров технологии плавки IF-стали в конвертере с верхней подачей дутья»
Раздел: Промышленность, производство
Количество знаков с пробелами: 48440
Количество таблиц: 16
Количество изображений: 0

Похожие работы

Скачать
79484
2
13

... шихты на 1 тонну годных слитков и стоимости передела. Она включает также расход энергии, электродов, огнеупоров, изложниц, зарплату персоналу. Основные технико-экономические показатели способов производства стали. Показатель Способ производства стали конвертер-ный мартеновский электропла-вильный Вместимость плавильного агрегата, т. 250-400 400-600 200-300 Выход годного (стали),% ...

Скачать
167029
15
0

... Югов П.И. Использование термодинамической модели для прогнозирования усвоения элемента раскисления //Сталь – 1977. - №10. – с. 12-21. 15.       Мочалов С.П. Методы оптимизации металлургических процессов. – Новокузнецк, 1989. 16.       Информационная технология. Комплекс стандартов и руководящих документов на автоматизированные системы. – М.: Издательство стандартов, 1991. – 36 с. 17.       ГОСТ ...

Скачать
36050
2
3

... 10-30 %, максимальное количество меди в концентрате до 50%. В России основными предприятиями по производству меди являются: Норильский никель, Северный никель, Пышма, Среднеуральский медеплавильный завод. 6  История развития ОАО "Среднеуральский медеплавильный завод" Правительственное постановление о строительстве на Урале крупного медеплавильного предприятия на базе Дегтярского месторождения ...

Скачать
39511
0
7

... большая часть графитизируется в виде пластинчатого графита, а содержание углерода в виде цементита составляет не более 0,8 %. У серых чугунов хорошие технологические и прочностные свойства, что определяет широкое применение их как конструкционного материала. Половинчатые чугуны — занимают промежуточное положение между белыми и серыми чугунами, и в них основное количество углерода (более 0,8 %) ...

0 комментариев


Наверх