3.4 Определение частот вращения графическим методом

Масштабный коэффициент плана частот вращений:

.

Частоты вращения, полученные графическим способом:


4. Синтез и анализ кулачкового механизма

Исходные данные:

- № кинематического графика движения толкателя4

- тип толкателя – плоский толкатель

- максимальный ход (подъем) толкателя h, мм 50

- рабочий угол кулачка , град200

- частота вращения кривошипа nкр, мин-165

Рисунок 5 – Диаграмма движения выходного звена

4.1 Построение диаграмм и определение масштабных

коэффициентов

По заданному графику скорости толкателя графическим интегрированием по методу хорд строят 2 графика – график ускорения толкателя a(t) и график перемещения толкателя S(t). Базы интегрирования Н1=60мм.

Определяем масштабные коэффициенты:

Масштабный коэффициент перемещения

где h – максимальный ход толкателя, м;

 yh – максимальная ордината графика соответствующая заданному подъёму толкателя, мм.

Масштабный коэффициент времени

где φр – рабочий угол кулачка, град;

 nкул – частота вращения кулачка, мин-1;

 xt – длина отрезка на оси абсцисс графика, изображающая время поворота кулачка на рабочий угол, мм.

Масштабный коэффициент скорости толкателя

4.2 Минимальный радиус кулачка

Выбираем исходя из условия R0≥h

R0=150 мм


4.3 Построение профиля кулачка

Профиль кулачка строим в масштабном коэффициенте построения  Проводим окружность радиусом R0, откладываем фазовый рабочий угол ْ и делим его на 12 частей. От точки деления проводим ось. Вдоль оси толкателя откладываем текущее перемещение толкателя от окружности минимального радиуса и проводим перпендикуляры к линиям. Профилем кулачка будет огибающая всех положений тарелки толкателя.

4.4 Определение максимальной скорости и ускорения толкателя

где ,  – максимальные ординаты скорости и ускорения на соответствующих графиках, мм.

Составляем программу определения профиля кулачка.

Public Sub kulachok()

Dim I As Integer

Dim dis1, dis2, R, a1, a2, arksin1, arksin2, BETTA As Single

Dim R0, FIR, FI0, FII, SHAG, E As Single

Dim S(1 To 10) As Single

Worksheets(1).Activate

Worksheets(1).Range("a:o").Clear

Worksheets(1).ChartObjects.Delete

R0 = InputBox("ВВЕДИТЕ МИНИМАЛЬНЫЙ РАДИУС КУЛАЧКА RO")

FIR = InputBox("ВВЕДИТЕ РАБОЧИЙ УГОЛ КУЛАЧКА FIR")

FI0 = InputBox("ВВЕДИТЕ НАЧАЛЬНОЕ ЗНАЧЕНИЕ УГЛА_

ПОВОРОТА КУЛАЧКА FI0")

E = InputBox("ВВЕДИТЕ ДЕЗАКСИАЛ E")

For I = 1 To 10

S(I) = InputBox("ВВЕДИТЕ СТРОКУ ПЕРЕМЕЩЕНИЙ S(" & I & ")")

Next I

FIR = FIR * 0.0174532

SHAG = FIR / 10

FI0 = FI0 * 0.0174532

FII = FI0

For I = 1 To 10

dis1 = (R0 ^ 2 - E ^ 2) ^ (1 / 2)

dis2 = S(I) ^ 2 + R0 ^ 2 + 2 * S(I) * dis1

R = dis2 ^ (1 / 2)

a1 = E / R

a2 = E / R0

arksin1 = Atn(a1 / (1 - a1 ^ 2) ^ (1 / 2))

arksin2 = Atn(a1 / (1 - a2 ^ 2) ^ (1 / 2))

BETTA = FII + arksin1 - arksin2

BETTA = BETTA * 180 / 3.1415

Worksheets(1).Cells(1, 1) = "R"

Worksheets(1).Cells(1, 2) = "BETTA"

Worksheets(1).Cells(I + 1, 1) = R

Worksheets(1).Cells(I + 1, 2) = BETTA

FII = FII + SHAG

Next I

End Sub


Результаты работы программы

R, мм BETTA
150 0
155,35 16,67
164,33 33,34
172,64 50,01
180,96 66,68
189,98 83,35
195,04 100,02
189,98 116,69
180,96 133,36
172,64 150,03
164,33 166,70
155,35 183,37
150 200,04
150 216,71
150 233,38
150 250,05
150 266,72
150 283,39
150 300,06
150 316,73
150 333,40
150 350,07
150 360,00


Список литературы

1. Артоболевский И.И. Теория машин и механизмов.–Наука, М.: 1998 – 720 с.

2. Кожевников С.Н., Теория машин и механизмов, Машиностроение, М.: 1969г. – 538 с.

3. Корняко А.С., Курсовое проектирование по теории машин и механизмов. – Вища школа, Киев: 1970г. – 330 с.

4. Фролов И.П., Теория механизмов, машин и манипуляторов. – Дизайн ПРО, Минск .: 1998 г. – 428 с.

5. Фролов К.В., Теория механизмов и машин. Высшая школа, М.: 1998 – 494с.


Информация о работе «Привод конвейера ПК-19»
Раздел: Промышленность, производство
Количество знаков с пробелами: 19526
Количество таблиц: 3
Количество изображений: 8

Похожие работы

Скачать
33872
9
16

... *0,72*0,992=3,764 кВт; Р4=Р3 η3=5,124*0,95=3,576 кВт, что близко к заданному. Определяем вращающие моменты на каждом валу привода по формуле (Нм) (2.5) ; ; ; . Все рассчитанные параметры сводим в табл.1. Таблица 1 Параметры кинематического расчета № вала n, об/мин ω, рад/с Р, кВт Т, Нм U   Дв. (1) 1444,5 151,27 5,5 36,35 2   ...

Скачать
23197
1
2

... = 60 ґ n ґ Lh / 106 L = 60 ґ 1435 ґ 100000 / 106 = 861 7.1.9. Определяю расчетную динамику подшипника c = PIIпр3.3 z c = 1222.16 3.3 861 = 9473.77 Основные характеристики принятого подшипника: Подшипник № 36205 d = 25мм D = 52мм C = 16700H  = 15мм r = 1.5мм C0 = 9100H n = 13000 об/мин 7.2. Проектный расчет второго вала редуктора и подбор подшипников d2 = c 3 ...

Скачать
15537
1
0

... ; ´Рэ Рэ = 2.2 кВт Т.к. частота вращения nс = 1500 об/мин; число полюсов 4 и S% = 5,1, то По табл. П2 с.65 [1] выбираем условное обозначение электродвигателя 4А132S5 1.2 Кинематический расчет привода Определяем асинхронную частоту вращения. nq = nc (1 – (S% / 100)) nq = 1500(1-(5.1 / 100)) = 1423 Определяем общее передаточное число привода. U = nq /nб U = 1423/160 = 8.9 ...

Скачать
24613
15
34

... выбранного двигателя необходимо проверить по следующим условиям: ·  Условия неперегревания ·  Условие перегрузка Так условию перегрузки удовлетворяет лишь двигатель 4А160М2У3, то принимаем его в качестве привода редуктора. 1.2 Определение исходных данных   Определение длительности действия max нагрузок Так как N1>5*104 => первая передача рассчитывается на усталость с 1 – го ...

0 комментариев


Наверх