2.3.8 Определение числа зубьев колеса
z2 = zΣ- z1 (2,19)
z2= 100-20 =80
2.3.9 Определение геометрических размеров колес и шестерён
Делительные диаметры:
d=mn ×z
d1=2×20=40 мм d2=2×80=160 мм
Диаметры вершин зубьев:
da = d+ 2·mn (2,20)
da1 = d1 + 2·mn = 40 + 2·2 = 44 мм;
da2 = d2 + 2·mn = 160 + 4 = 164 мм;
Диаметры впадин зубьев:
df = d– 2.5·mn (2,21)
df1 = d1 – 2.5·mn = 40 – 2,5·2 = 35 мм;
df2 = d2 – 2.5·mn = 160 – 2,5·2 = 155 мм;
Ширина колеса:
b2 = ψa · aW (2,22)
b2 = ψa · aW = 0.25·100 = 25 мм
Ширина шестерни:
b1 = b2 + 5мм (2,23)
b1 = b2 + 5 = 25 + 5 = 30 мм
2.3.10 Определение усилий в зацеплении
Окружное усилие:
Ft = (2×T) / d, (2,24)
где Ft- окружное усилие, кН;
T - крутящий момент на зубчатом колесе, Н • м;
d - делительный диаметр колеса, мм;
Ft = (2×51,22)/40 = 2,56кН
Радиальное усилие:
Fr=Ft• tgαw(2.25)
где aw - угол зацепления, aw =20°.
Fr=2,56•tg20 = 0,93 кН
2.3.11 Проверка зубьев колес по напряжениям изгиба
Для этого производят оценку изгибной прочности, т.е. находят отношения:
[σ]F1/YF1 и [σ]F2/ YF2 (2,26)
Коэффициенты формы зубьв YF1 и YF2 определяются по эквивалентному числу зубьев шестерни и колеса:
YF1=4,13 YF2=3,73
Расчёт ведётся по шестерне.
Напряжения изгиба определяются по формуле:
σF = (2×103× YF×KFα× KFβ ·KFV×T)/(m2×Z×b) [σ]F, (2,27)
где σF - рабочее напряжение изгиба, МПа;
KFα – коэффициент распределения нагрузки между зубьями, зависящими от окружной скорости колеса;
KFβ - коэффициент концентрации нагрузки;
KFV -коэффициент динамичности нагрузки;
Коэффициент концентрации нагрузки KFβ назначают в зависимости от коэффициента ширины:
(2,28)
Для определения коэффициента динамичности нагрузки KFV предварительно необходимо определить окружную скорость колеса:
V= (π×d×n)/(6×104), (2,28)
где V - скорость колеса, м/с;
d - делительный диаметр, мм;
n - частота вращения колеса, мин-1
По скорости назначаем степень точности колеса – 8 степень точности и коэффициент динамичности KFV = 1,04
σF1 =205,3МПа < [σ]F1 = 323,5МПа
Прочность зубьев на изгиб обеспечена.
2.3.12 Проверка зубьев колес на контактную прочность
(2,29)
где σH-контактные напряжения, МПа;
К - вспомогательный коэффициент, К =428 – для прямозубой передачи;
KHα- коэффициент распределения нагрузки между зубьями, КHα = 1;
KHβ - коэффициент концентрации нагрузки, KHβ = 1,08;
KHV- коэффициент динамичности нагрузки, KHV=1,03;
Ft- окружное усилие, Н;
d1- делительный диаметр шестерни, мм;
b2- ширина колеса, мм.
σH = 801,5 МПа < [σ]H = 953, 25 МПа
Прочность зубьев обеспечена.
3. Расчёт прямозубой конической передачи
3.1 Исходные данные
Крутящий момент на шестерне T1 = 14,84 Hм;
Крутящий момент на колесе T2 = 51,22 Hм;
Частота вращения шестерни n1 =695 мин-1;
Частота вращения колеса n2 = 195,77 мин-1;
Передаточное число u = 3,55;
Срок службы передачи L = 5лет;
Коэффициент суточного использования Kc = 0,29;
Коэффициент годового использования Kr = 0,8.
3.2 Выбор материала и термообработки
Шестерня: Сталь 40Х. Термообработка: улучшение и закалка ТВЧ. Твёрдость 45-50HRCэ.
Колесо: Сталь 40Х. Термообработка: улучшение и закалка ТВЧ. Твёрдость 45-50HRCэ.
3.3 Определение допускаемых напряжений
3.3.1 Определение срока службы передачи
tΣ = 10161 часов – определено ранее.
3.3.2 Определение допускаемых напряжений на контактную прочность
, (3,1)
где - базовое допускаемое напряжение, МПа;
ZN – коэффициент долговечности
Определяем базовые допускаемые напряжения:
(3,2)
ZR=1 (т.к. проводится шлифование закалённой шестерни);
ZV=1 (проектный расчёт);
SH=1,3 (поверхностное упрочнение).
(3.3)
m = 6;
NHE=60·n·tΣ=
=60·n·tΣ (a1b13+a2b23+…+ aibi3) (3.4)
Шестерня | Колесо | |
NHE1=60·695·10161·(13·0,15+ +0,53·0,85)=10,9·107 NHE1> NHО1=>ZN1=1 | NHE2=60·195,77·10161·(13·0,15+ +0,53·0,85)=3,06·107 NHE2< NHО | |
775·1=775МПа | 775·1,23=953,25 МПа | |
За расчётное принимаем 775МПа
... проекта по “Деталям машин” были закреплены знания, полученные за прошедший период обучения в таких дисциплинах как: теоретическая механика, сопротивление материалов, материаловедение. Целью данного проекта является проектирование привода цепного конвейера, который состоит как из простых стандартных деталей, так и из деталей, форма и размеры которых определяются на основе конструкторских, те
... Результаты расчётов сводятся в табл.1.2 и являются исходными данными для всех следующих расчётов. Таблица 1.2 Результаты кинетического и силового расчётов привода Параметры № вала N, кВт ω рад/с М,Нм 1 16,5 102,05 161,7 2,98 47,68 2 15,7 34,24 458,5 4 3 14,9 8,56 1740 4 4 14,3 2,14 6682 1 5 13 2,4 6542 2. Расчет ...
... – КПД зубчатой цилиндрической прямозубой передачи; η3 = 0,99 – КПД пары подшипников качения, η4 = 0,8 – КПД цепной передачи Потребная мощность электродвигателя Частота вращения вала двигателя nЭ = n3 ∙ uРЕД ∙ uЦИЛ Где: – частота вращения вала конвейера; uРЕД = 16…50 – интервал передаточных чисел редуктора; uЦИЛ = 2,5…5 – интервал передаточных ...
... 12,4-14,5 мм. Назначаем dк = 25 мм. dбк ≥ 25+3 ּ 1 = 28 мм. Назначаем dбк = 28 мм. dп = 25-3 ּ 1,5 = 21,5 мм. Назначаем dп = 20 мм. dбп ≥ 20+3 ּ 1,5 = 24,5 мм. Назначаем dбп = 25 мм. 3.2.3 Проверочный расчет валов Плоскость YOZ (вертикальная). Для определения реакции Rb воспользуемся уравнением (3.4) - Fr1 ּ 28+Fa2 ּ 45+Fr2 ּ 39+Fa1 ...
0 комментариев