3.3.3 Определение допускаемых напряжений при расчёте зубьев на изгиб
(3,5)
(3,6)
(3,7)
NFO=4·106; m=9
(3.8)
=550МПа, YR=1,YX=1,Yδ=1,SF=1,7
=550·1·1·1/1,7=323,5МПа
NFE1>NFО=>YN1=1 | NFE2>NFО=>YN2=1 |
YA=1 – передача нереверсивная
3.3.4 Определение диаметра внешней делительной окружности колеса
de2= 1650· (3,9)
где de2 - диаметр внешней делительной окружности колеса, мм;
KH - коэффициент нагрузки, KH =1,5;
Т2 - крутящий момент на колесе, Н • м;
[σ]H - допускаемые напряжения на контактную прочность, МПа;
VH - коэффициент понижения контактной прочности конической передачи, VH =0,85.
de2 = 1650
Назначаем de2ст = 140 мм.
3.3.5 Определение числа зубьев шестерни
Определяем делительный диаметр шестерни:
(3.10)
По делительному диаметру назначаем число зубьев шестерни Z1`=Z=17 т.к. Н1 и Н2 >45 HRCЭ.
3.3.6 Определение числа зубьев колеса
Z2 =Z1×u (3.11)
Z2 = 17·3,55=60
3.3.7 Определение торцевого модуля
mte = de2ст./Z2 (3.12)
mte = 140/60=2,33 мм
Стандартное значение торцевого модуля mte = 2,25мм (ГОСТ 9563-80)
3.3.8Уточнение диаметра делительной окружности колеса
de2 = mte ×Z2 (3,13)
de2 = 2,25·60=135 мм
Фактическое передаточное число: Uфак=60/17=3,53
3.3.9 Определение внешнего конусного расстояния
(3,14)
где z 1и z2 - фактические числа зубьев шестерни и колеса.
Re = 0.5×2,25×= 70,16мм
3.3.10 Определение ширины колес
b = kbe×Rbe, (3,15)
где kbe – коэффициент ширины, kbe = 0,285
b = 0,285·70,16=19,99
берём в=20 мм
3.3.11 Определение углов наклона образующих делительных конусов
δ2 = arctg Uфакт. (3,16)
δ1= 900- δ2 (3,17)
δ2 = arctg 3,53 = 74,20
δ1= 900-74,20 = 15,80
3.3.12 Определение диаметров колес
Делительные диаметры:
de1 = mte × z1 (3,18)
de2 = mte × z2 (3,19)
de1 =2,25·17=38,3мм
de2 = 2,25·60=135мм
Внешние диаметры:
dae1 = de1+2(1+x1)×mte×cos δ1 (3,20)
dae2 = de2+2(1+x2)×mte×cos δ2, (3,21)
где х1 и х2 – коэффициенты радиального смещения, х1 и х2 = 0
dae1 =38,3+2·2,25×cos15,82=42,6мм
dae2 =135+2·2,25·cos74,2=136,23мм
... проекта по “Деталям машин” были закреплены знания, полученные за прошедший период обучения в таких дисциплинах как: теоретическая механика, сопротивление материалов, материаловедение. Целью данного проекта является проектирование привода цепного конвейера, который состоит как из простых стандартных деталей, так и из деталей, форма и размеры которых определяются на основе конструкторских, те
... Результаты расчётов сводятся в табл.1.2 и являются исходными данными для всех следующих расчётов. Таблица 1.2 Результаты кинетического и силового расчётов привода Параметры № вала N, кВт ω рад/с М,Нм 1 16,5 102,05 161,7 2,98 47,68 2 15,7 34,24 458,5 4 3 14,9 8,56 1740 4 4 14,3 2,14 6682 1 5 13 2,4 6542 2. Расчет ...
... – КПД зубчатой цилиндрической прямозубой передачи; η3 = 0,99 – КПД пары подшипников качения, η4 = 0,8 – КПД цепной передачи Потребная мощность электродвигателя Частота вращения вала двигателя nЭ = n3 ∙ uРЕД ∙ uЦИЛ Где: – частота вращения вала конвейера; uРЕД = 16…50 – интервал передаточных чисел редуктора; uЦИЛ = 2,5…5 – интервал передаточных ...
... 12,4-14,5 мм. Назначаем dк = 25 мм. dбк ≥ 25+3 ּ 1 = 28 мм. Назначаем dбк = 28 мм. dп = 25-3 ּ 1,5 = 21,5 мм. Назначаем dп = 20 мм. dбп ≥ 20+3 ּ 1,5 = 24,5 мм. Назначаем dбп = 25 мм. 3.2.3 Проверочный расчет валов Плоскость YOZ (вертикальная). Для определения реакции Rb воспользуемся уравнением (3.4) - Fr1 ּ 28+Fa2 ּ 45+Fr2 ּ 39+Fa1 ...
0 комментариев