1. Опора А
4.1.2 Упрощённый расчёт вала
(5.4)
где σЭ – эквивалентное нагружение, МПа;
σ – номинальные напряжения изгиба, МПа;
τ – напряжения изгиба, МПа.
(5.5)
(5.6)
где σ-1 – предел выносливости материала при изгибе, МПа;
σ-1=0,43σв (5.7)
σ-1=0,43·600=258МПа
ε – коэффициент влияния абсолютных размеров поперечного сечения, ε=0,88;
S – коэффициент запаса сопротивления усталости, S=2;
Кδ – эффективный коэффициент концентрации нормальных напряжений,
Кδ = 1,65 – переход с галтелью.
σЭ = 8,99 < =68,8МПа
Прочность в сечении обеспечена.
4.2 Расчёт промежуточного вала
4.2.1 Материал и термообработка вала
Так как вал изготовляется заодно с шестерней, то материалом вала будет материал шестерни: Сталь 40Х
σв=600МПа
σТ=350МПа
4.2.2 Проектный расчёт вала
dк (5.11)
dБКdК+3f (5.12)
dБndn+3γ, (5.13)
dn=dK-3γ (5.14)
dк
Назначаем dк=24мм, f=1мм
dБК24+3·1=27мм
Назначаем dБК=27мм, r=1,6мм
dn=24-3·1,6=19мм
Назначаем dn=20мм.
4.2.3 Проверочный расчёт вала
Ft1 = 0,9кН; Ft2 = 2,56кН;
Fr1 = 0,09кН; Fr2 = 0,93кН.
Fa1=0,32кН; Т2=51,22Н·м.
ΣМA=0; RBY·129-Fr1·97-Fr2·32 +Fa1·d/2=0
RBY=
ΣМВ=0; -RAY·129+Fr1·32+Fr2·97+ Fa1·12·=0
RAY=
ΣF=0; Ra+ Rb-Fr1-Fr2=0
0,27+0,75-0,09-0,93=0
I-I
M1=Ra·z1
M1=0; M1=0,27×32=8,64Н·м
II-II
M2=Ra·z2-Fr2·(z2-32)
M2=0,27×32=8,64 Н·м
M2=0,27·97-0,93·65=-34,26 Н·м
III-III
М3=Rb·z3
М3=0; М3=0,75·32=24 Н·м
ΣМА=0; RBX·129-Ft1·97-Ft2·32=0
RBX= кН
ΣМВ=0; -RAX·129+Ft1·32+Ft2·97=0
RAX=кН
ΣF=0; Rax+Rbx-Ft1-Ft2=0
1,31+2,15-2,56-0,9=0
I-I
М1=Rax·z1
M1=0; M1=2,15·32=68,8 Н·м
II-II
М2=Rbx·z2
M2=0; M2=1,31·32=41,92 Н·м
Выделяем опасные сечения.
1. Место посадки конического колеса на вал.
2. Шестерня.
4.2.4 Упрощённый расчёт вала
(5.15)
где σЭ – эквивалентное нагружение, МПа;
σ – номинальные напряжения изгиба, МПа;
τ – напряжения изгиба, МПа.
(5.16)
(5.17)
(5.18)
где σ-1 – предел выносливости материала при изгибе, МПа;
σ-1=258МПа
ε – коэффициент влияния абсолютных размеров поперечного сечения, ε=0,88;
S – коэффициент запаса сопротивления усталости, S=2;
Кδ – эффективный коэффициент концентрации нормальных напряжений,
Кδ = 1,75 – шпоночный паз.
σЭ = 64,2 <=64,87МПа
Прочность в сечении обеспечена.
σ-1=258МПа; ε=0,86; S=2; Кδ = 1,6 – переход с галтелью.
σЭ = 59,52 <=69,33МПа
Прочность в сечении обеспечена.
4.3 Расчёт тихоходного вала
4.3.1 Материал и термообработка вала
Сталь 45 горячекатанная.
σв=580МПа
σТ=320МПа
4.3.2 Проектный расчёт вала
d (5.19)
dnd+2t (5.20)
dБndn+3γ (5.21)
dкdБn
d
Назначаем d=40 мм, t=2,5
dn40+2·2,5=45мм
Назначаем dn=45мм; r=3
dБn40+3·3=49мм
Назначаем dБn=52мм; dк=48мм.
... проекта по “Деталям машин” были закреплены знания, полученные за прошедший период обучения в таких дисциплинах как: теоретическая механика, сопротивление материалов, материаловедение. Целью данного проекта является проектирование привода цепного конвейера, который состоит как из простых стандартных деталей, так и из деталей, форма и размеры которых определяются на основе конструкторских, те
... Результаты расчётов сводятся в табл.1.2 и являются исходными данными для всех следующих расчётов. Таблица 1.2 Результаты кинетического и силового расчётов привода Параметры № вала N, кВт ω рад/с М,Нм 1 16,5 102,05 161,7 2,98 47,68 2 15,7 34,24 458,5 4 3 14,9 8,56 1740 4 4 14,3 2,14 6682 1 5 13 2,4 6542 2. Расчет ...
... – КПД зубчатой цилиндрической прямозубой передачи; η3 = 0,99 – КПД пары подшипников качения, η4 = 0,8 – КПД цепной передачи Потребная мощность электродвигателя Частота вращения вала двигателя nЭ = n3 ∙ uРЕД ∙ uЦИЛ Где: – частота вращения вала конвейера; uРЕД = 16…50 – интервал передаточных чисел редуктора; uЦИЛ = 2,5…5 – интервал передаточных ...
... 12,4-14,5 мм. Назначаем dк = 25 мм. dбк ≥ 25+3 ּ 1 = 28 мм. Назначаем dбк = 28 мм. dп = 25-3 ּ 1,5 = 21,5 мм. Назначаем dп = 20 мм. dбп ≥ 20+3 ּ 1,5 = 24,5 мм. Назначаем dбп = 25 мм. 3.2.3 Проверочный расчет валов Плоскость YOZ (вертикальная). Для определения реакции Rb воспользуемся уравнением (3.4) - Fr1 ּ 28+Fa2 ּ 45+Fr2 ּ 39+Fa1 ...
0 комментариев