3.3.13 Определение усилий в зацеплении
Окружные усилия на шестерне и колесе:
Ft1 = Ft2 = (2×T1)/de1(1-0.5kbe), (3,22)
где Ft1, Ft2 - окружные усилия, кН;
T1- крутящий момент на шестерне, Н • м;
de1- делительный диаметр шестерни, мм.
Ft1 = Ft2 = 2×14,84/38,25× (1-0,5×0,285) =0,9 кН
Осевое усилие на шестерне:
Fa1 = Ft×tgα× sinδ1 (3,23)
Fa1 = 0,9×tg200×sin15,820 = 0,09кН
Радиальное усилие на шестерне:
Fr1 = Fttgα cos δ1 (3,24)
Fr1 = 0,9×tg200 ×cos 15,820 = 0,32 кН
Осевое усилие на колесе:
Fa2 = Fr1 (3,25)
Fa2=0,32 кН
Радиальное усилие на колесе:
Fr2 = Fa1 (3,26)
Fr2= 0,09 кН
3.3.14 Проверка прочности зубьев на изгиб
Для этого определяются эквивалентные числа зубьев шестерни и колеса:
zv1 = z1/cos δ1 (3,27)
zv2 = z2/cos δ2 (3,28)
zv1 = 17/cos15,820 = 17,67 => YF1=4,31
zv2=60/cos74,180 = 220, 09=> YF2=3,74
Находим отношения:
[σ]F1 / YF1 и [σ]F2/ YF2 (3,29)
323,5/4,31=75,06<323.5/3,74=86,5
Проверочный расчёт ведём по шестерне:
σF = 2.7×103× YF×KFβ× KFV ×T/b× de ×mte×VF ≤ [σ]F, (3,30)
где VF- коэффициент понижения изгибной прочности конической передачи по сравнению с цилиндрической: VF = 0,85.
Коэффициент концентрации нагрузки при изгибе KFβ определяется в зависимости от коэффициента концентрации нагрузки по контактным напряжениям KFβ по формуле:
KFβ = 1+ (KHβ-1)×1.5, (3,31)
где KHβ=1,2
KFβ = 1+(1,2-1)×1,5 = 1,3
При определения коэффициента динамичности нагрузки КFV предварительно необходимо определить окружную скорость колеса V, м/с:
V = π× de2(1-0.5× kbe) ×n2/6×104 (3.32)
где n2 – частота вращения колеса, мин-1.
V =3.14·135·(1-0.5·0.285)·195,77/6·104 = 1,19 м/с
По скорости назначаем степень точности: 8. По степени точности назначаем коэффициенты: KFV = 1,04 и КHV = 1,03
σF = 2,7·103·4,31·1,3·1,04·14,84/20·38,25·2,25·0,85=177,32МПа
σF = 177,32<=323,5 МПа
Прочность зубьев на изгиб обеспечена.
3.3.15 Проверка зубьев колёс на контактную прочность
(3,33)
σH = 695,95 < [σ]H = 775 МПа
Контактная прочность зубьев обеспечена.
3.3.16 Проверка условия компоновки редуктора
(3,34)
100-136,23/2-50/2=6,9 мм - условие компоновки редуктора выполняется.
4. Расчёт валов
4.1 Расчёт входного вала
4.1.1 Проверочный расчёт вала
Составляем расчётную схему, т.е. вал заменяем балкой на двух опорах.
К балке прикладываем все внешние силы, нагружающие вал, приводя плоскость их действия к двум взаимно перпендикулярным плоскостям (горизонтальной и вертикальной).
Ft1 = 0,9 кН; Fr1 = 0,32кН;
Fa1 = 0,09кН.
ΣМВ=0; Fr1·48- Fa1·d/2-RAY·26=0
RAY=
ΣМA=0; Fr1·22- Fa1·d/2+RBY·26=0
RBY=
ΣF=0; RBY+ RAY -Fr1=0
0,53-0,21+0,32=0
I-I
M1=Fa1·d1/2-Fr1·z1
M1=0,09×15=1,35Н·м
M1=-0,32×22+0,09×15=-5,69Н·м
II-II
M2=-Fp·z2+ Fa1×25+ RAY×(z2-22)
M2==-0,32×22+0,09×15=-5,69 кН;
M2=-0,32·48+0,09×15+0,53×26=0
ΣМА=0; RBX·26+Ft1·22=0
RBX=-Ft1·22/26=-0,9·22/26=-0,76 кН
ΣМВ=0; -RAX·26+Ft1·48=0
RAX=Ft1·48/26=0,9×48/26=1,66 кН
ΣF=0; Ra+Rb-Ft=1,66-0,76-0,9=0
I-I
М1=-Ft1·z1
M1=0; M1=-0,9·22=-19,8 Н·м
Выделяем опасные сечения.
... проекта по “Деталям машин” были закреплены знания, полученные за прошедший период обучения в таких дисциплинах как: теоретическая механика, сопротивление материалов, материаловедение. Целью данного проекта является проектирование привода цепного конвейера, который состоит как из простых стандартных деталей, так и из деталей, форма и размеры которых определяются на основе конструкторских, те
... Результаты расчётов сводятся в табл.1.2 и являются исходными данными для всех следующих расчётов. Таблица 1.2 Результаты кинетического и силового расчётов привода Параметры № вала N, кВт ω рад/с М,Нм 1 16,5 102,05 161,7 2,98 47,68 2 15,7 34,24 458,5 4 3 14,9 8,56 1740 4 4 14,3 2,14 6682 1 5 13 2,4 6542 2. Расчет ...
... – КПД зубчатой цилиндрической прямозубой передачи; η3 = 0,99 – КПД пары подшипников качения, η4 = 0,8 – КПД цепной передачи Потребная мощность электродвигателя Частота вращения вала двигателя nЭ = n3 ∙ uРЕД ∙ uЦИЛ Где: – частота вращения вала конвейера; uРЕД = 16…50 – интервал передаточных чисел редуктора; uЦИЛ = 2,5…5 – интервал передаточных ...
... 12,4-14,5 мм. Назначаем dк = 25 мм. dбк ≥ 25+3 ּ 1 = 28 мм. Назначаем dбк = 28 мм. dп = 25-3 ּ 1,5 = 21,5 мм. Назначаем dп = 20 мм. dбп ≥ 20+3 ּ 1,5 = 24,5 мм. Назначаем dбп = 25 мм. 3.2.3 Проверочный расчет валов Плоскость YOZ (вертикальная). Для определения реакции Rb воспользуемся уравнением (3.4) - Fr1 ּ 28+Fa2 ּ 45+Fr2 ּ 39+Fa1 ...
0 комментариев