2.2 Допускаемые предельные контактные напряжения.

Согласно источнику [1, стр27,табл.9]:

σHPmax=44* H HRC

σHPmax=44*55=2420МПа.

2.3 Допускаемые напряжения при расчёте зуба на выносливость по изгибу.

σ Flimbj- предел выносливости шестерни или колеса при изгибе

 σ F lim b 1=680МПа

 σ F lim b 2= 680МПа

S Fmin 1,2- минимальный коэффициент запаса прочности

Согласно источнику [1, стр28]:

S Fmin 1,2=1,7

Y Nj- коэффициент долговечности, вычисляется по формуле

 

Y Nj

где N Flim- базовое число циклов напряжений изгиба согласно источнику[1, стр28]:

N Flim=4*106

Для зубчатых колес с твердостью поверхности зубьев Н≤350НВ q F=6

N FEj- эквивалентное число циклов напряжений изгиба на зубьях шестерни или колеса .

N FEjF*Nj j=1,2

Согласно источнику [1, стр28, табл. 10]:

μF=0,038

Тогда

N FE1=2*108*0,038=0,76*106

N FE2=6,9*106*0,038=0,26*106

Вычислим коэффициент долговечности:

Y N1=1,3

 

Y N2=1,5

YA- коэффициент, учитывающий влияние двустороннего приложения нагрузки на зубьях

Согласно источнику [1, стр29, табл. 11]принимаем:

YA=1

Допускаемые напряжения :

МПа

МПа

2.4 Допускаемые напряжения изгиба при действии кратковременной максимальной нагрузки.

где σ FSt– предельное напряжение изгиба при максимальной нагрузке МПа, принимаем согласно источнику [1, стр30, табл. 12]:

 σ FSt= 2000МПа

 S FStmin- минимальный коэффициент запаса прочности пери расчете максимальной нагрузки, вычисляется по зависимости:

S FSt min= YZ*SY

Где YZ-коэффициент, учитывающий способ получения заготовки зубчатого колеса , выбираемый согласно источнику [1, стр31, табл. 13]:

YZ=1

SY- коэффициент, зависящий от вероятности неразрушения зубчатого колеса, выбирается согласно источнику [1, стр31]:

SY=1,75

S FStmin=1*1,75=1,75

Yх -коэффициент, учитывающий размеры зубчатого колеса , выбирается согласно источнику [1, стр31, рис. 8]:

Yх=1,025

=1171 МПа

3.Расчет закрытых цилиндрических передач.

3.1.1 Геометрический расчет тихоходной передачи.

а)шестерня

-делительный диаметр :

d 1= d w= ,

mn- модуль зацепления

mn=2,250

β-угол наклона зубьев

cosβ =cos9.069 = 0.987

Z1-число зубьев

Z1=20

d 1= d w= =45,6мм

-диаметр вершин зубьев:

d a1=d1+2mn

d a1=45,6+2*2,250=50,1мм

-диаметр впадин зубьев

d f1=d1-2.5mn

d f1=45.6-2,5*2,250=39,975мм

б)колесо

-делительный диаметр :

d 2= d w=  ,

Z2=59

mn=2,250

cosβ =cos9.069 = 0.987

d 2= d w=  =134,5

-диаметр вершин зубьев:

d a2=d2+2mn

d a2=134,5+2*2,250=139мм

-диаметр впадин зубьев

d f2=d2-2.5mn

d f2=134,5-2,5*2,250=128,875мм


Информация о работе «Привод цепного конвейера»
Раздел: Промышленность, производство
Количество знаков с пробелами: 19178
Количество таблиц: 3
Количество изображений: 1

Похожие работы

Скачать
16774
0
9

... проекта по “Деталям машин” были закреплены знания, полученные за прошедший период обучения в таких дисциплинах как: теоретическая механика, сопротивление материалов, материаловедение. Целью данного проекта является проектирование привода цепного конвейера, который состоит как из простых стандартных деталей, так и из деталей, форма и размеры которых определяются на основе конструкторских, те

Скачать
41198
10
21

... Результаты расчётов сводятся в табл.1.2 и являются исходными данными для всех следующих расчётов. Таблица 1.2 Результаты кинетического и силового расчётов привода Параметры № вала N, кВт ω рад/с М,Нм 1 16,5 102,05 161,7 2,98 47,68 2 15,7 34,24 458,5 4 3 14,9 8,56 1740 4 4 14,3 2,14 6682 1 5 13 2,4 6542 2. Расчет ...

Скачать
11229
0
1

... – КПД зубчатой цилиндрической прямозубой передачи; η3 = 0,99 – КПД пары подшипников качения, η4 = 0,8 – КПД цепной передачи Потребная мощность электродвигателя Частота вращения вала двигателя nЭ = n3 ∙ uРЕД ∙ uЦИЛ Где:  – частота вращения вала конвейера; uРЕД = 16…50 – интервал передаточных чисел редуктора; uЦИЛ = 2,5…5 – интервал передаточных ...

Скачать
53034
1
0

... 12,4-14,5 мм. Назначаем dк = 25 мм. dбк ≥ 25+3 ּ 1 = 28 мм. Назначаем dбк = 28 мм. dп = 25-3 ּ 1,5 = 21,5 мм. Назначаем dп = 20 мм. dбп ≥ 20+3 ּ 1,5 = 24,5 мм. Назначаем dбп = 25 мм. 3.2.3 Проверочный расчет валов Плоскость YOZ (вертикальная). Для определения реакции Rb воспользуемся уравнением (3.4) - Fr1 ּ 28+Fa2 ּ 45+Fr2 ּ 39+Fa1 &# ...

0 комментариев


Наверх