3.1.2 Геометрический расчет быстроходной передачи.

 

а)шестерня

-делительный диаметр :

d 1= d w= ,

mn- модуль зацепления

mn=1,250

β-угол наклона зубьев

cosβ =cos15,143= 0.965

Z1-число зубьев

Z1=25

d 1= d w= =32,4мм

-диаметр вершин зубьев:

d a1=d1+2mn

d a1=32,4+2*1,25=34,9мм

-диаметр впадин зубьев

d f1=d1-2.5mn

d f1=32,4-2,5*1,250=29,275мм

б)колесо

-делительный диаметр :

d 2= d w=  ,

Z2=114

mn=1,250

cosβ = 0.965

d 2= d w=  =147,7

-диаметр вершин зубьев:

d a2=d2+2mn

d a2=147,7+2*1,250=150,2мм

-диаметр впадин зубьев

d f2=d2-2.5mn

d f2=147,7-2,5*1,250=144,575мм

3.2 Проверочный расчет закрытой цилиндрической зубчатой передачи.

3.2.1.Окружная скорость в зацеплении

где d1–делительный диаметр шестерни

d1=45,570мм

nj-частота вращения вала шестерни, мин -1

n1=309,75

3.2.2 Выбор степени точности передачи.

 Согласно источнику [1, стр41, табл. 15] выбираем точность 8 ( средняя)

3.2.3Коэффициент перекрытия

εα- коэффициент торцевого перекрытия

εα= [1.88-3.2*(1/Z1±1/Z2)]cos β,

Так как зацепление внешнее – знак «+»

εα=[1,88-3,2(1/20+1/59)]*0,987=1,6

εβ- коэффициент осевого перекрытия

-рабочая ширина зубчатых венцов

b2= bW=28

mn=2,250

εγ- суммарный коэффициент перекрытия

εγ= εα+ εβ

εγ=1,6+0,626=2,2

3.2.4Коэффициент K, учитывающий распределение нагрузки между зубьями в связи с погрешностями изготовления.

Согласно источнику [1, стр42, рис. 12] принимаем

K=1,08

3.2.5Коэффициент, учитывающий динамическую нагрузку, возникающую в зацеплении

Где Т1- вращающий момент на шестерне

 W HV– удельная окружная динамическая сила, Н/мм

W HVн*g 0*V*

Где σн- коэффициент, учитывающий влияние вида зубчатой передачи и

модификации профиля зубьев, выбирается согласно источнику

[1, стр42,табл. 16]:

σн=0,004МПа

g 0-коэффициент, учитывающий влияние разности шагов зацепления зубьев шестерни и колеса выбирается согласно источнику [1, стр43,табл. 17]:

g 0=56

W HV=0,004*56*0,739*

3.2.6 Удельная расчетная окружная силаН/мм

 

3.2.7 Коэффициент Z ε, учитывающий суммарную длину контактных линий.

Для косозубых передач с коэффициентом осевого перекрытия εβ‹1

Z ε=

Z ε=


Информация о работе «Привод цепного конвейера»
Раздел: Промышленность, производство
Количество знаков с пробелами: 19178
Количество таблиц: 3
Количество изображений: 1

Похожие работы

Скачать
16774
0
9

... проекта по “Деталям машин” были закреплены знания, полученные за прошедший период обучения в таких дисциплинах как: теоретическая механика, сопротивление материалов, материаловедение. Целью данного проекта является проектирование привода цепного конвейера, который состоит как из простых стандартных деталей, так и из деталей, форма и размеры которых определяются на основе конструкторских, те

Скачать
41198
10
21

... Результаты расчётов сводятся в табл.1.2 и являются исходными данными для всех следующих расчётов. Таблица 1.2 Результаты кинетического и силового расчётов привода Параметры № вала N, кВт ω рад/с М,Нм 1 16,5 102,05 161,7 2,98 47,68 2 15,7 34,24 458,5 4 3 14,9 8,56 1740 4 4 14,3 2,14 6682 1 5 13 2,4 6542 2. Расчет ...

Скачать
11229
0
1

... – КПД зубчатой цилиндрической прямозубой передачи; η3 = 0,99 – КПД пары подшипников качения, η4 = 0,8 – КПД цепной передачи Потребная мощность электродвигателя Частота вращения вала двигателя nЭ = n3 ∙ uРЕД ∙ uЦИЛ Где:  – частота вращения вала конвейера; uРЕД = 16…50 – интервал передаточных чисел редуктора; uЦИЛ = 2,5…5 – интервал передаточных ...

Скачать
53034
1
0

... 12,4-14,5 мм. Назначаем dк = 25 мм. dбк ≥ 25+3 ּ 1 = 28 мм. Назначаем dбк = 28 мм. dп = 25-3 ּ 1,5 = 21,5 мм. Назначаем dп = 20 мм. dбп ≥ 20+3 ּ 1,5 = 24,5 мм. Назначаем dбп = 25 мм. 3.2.3 Проверочный расчет валов Плоскость YOZ (вертикальная). Для определения реакции Rb воспользуемся уравнением (3.4) - Fr1 ּ 28+Fa2 ּ 45+Fr2 ּ 39+Fa1 &# ...

0 комментариев


Наверх