3.1.2 Геометрический расчет быстроходной передачи.
а)шестерня
-делительный диаметр :
d 1= d w= ,
mn- модуль зацепления
mn=1,250
β-угол наклона зубьев
cosβ =cos15,143= 0.965
Z1-число зубьев
Z1=25
d 1= d w= =32,4мм
-диаметр вершин зубьев:
d a1=d1+2mn
d a1=32,4+2*1,25=34,9мм
-диаметр впадин зубьев
d f1=d1-2.5mn
d f1=32,4-2,5*1,250=29,275мм
б)колесо
-делительный диаметр :
d 2= d w= ,
Z2=114
mn=1,250
cosβ = 0.965
d 2= d w= =147,7
-диаметр вершин зубьев:
d a2=d2+2mn
d a2=147,7+2*1,250=150,2мм
-диаметр впадин зубьев
d f2=d2-2.5mn
d f2=147,7-2,5*1,250=144,575мм
3.2 Проверочный расчет закрытой цилиндрической зубчатой передачи.
3.2.1.Окружная скорость в зацеплении
где d1–делительный диаметр шестерни
d1=45,570мм
nj-частота вращения вала шестерни, мин -1
n1=309,75
3.2.2 Выбор степени точности передачи.
Согласно источнику [1, стр41, табл. 15] выбираем точность 8 ( средняя)
3.2.3Коэффициент перекрытия
εα- коэффициент торцевого перекрытия
εα= [1.88-3.2*(1/Z1±1/Z2)]cos β,
Так как зацепление внешнее – знак «+»
εα=[1,88-3,2(1/20+1/59)]*0,987=1,6
εβ- коэффициент осевого перекрытия
-рабочая ширина зубчатых венцов
b2= bW=28
mn=2,250
εγ- суммарный коэффициент перекрытия
εγ= εα+ εβ
εγ=1,6+0,626=2,2
3.2.4Коэффициент KHα, учитывающий распределение нагрузки между зубьями в связи с погрешностями изготовления.
Согласно источнику [1, стр42, рис. 12] принимаем
KHα=1,08
3.2.5Коэффициент, учитывающий динамическую нагрузку, возникающую в зацеплении
Где Т1- вращающий момент на шестерне
W HV– удельная окружная динамическая сила, Н/мм
W HV=σн*g 0*V*
Где σн- коэффициент, учитывающий влияние вида зубчатой передачи и
модификации профиля зубьев, выбирается согласно источнику
[1, стр42,табл. 16]:
σн=0,004МПа
g 0-коэффициент, учитывающий влияние разности шагов зацепления зубьев шестерни и колеса выбирается согласно источнику [1, стр43,табл. 17]:
g 0=56
W HV=0,004*56*0,739*
3.2.6 Удельная расчетная окружная силаН/мм
3.2.7 Коэффициент Z ε, учитывающий суммарную длину контактных линий.
Для косозубых передач с коэффициентом осевого перекрытия εβ‹1
Z ε=
Z ε=
... проекта по “Деталям машин” были закреплены знания, полученные за прошедший период обучения в таких дисциплинах как: теоретическая механика, сопротивление материалов, материаловедение. Целью данного проекта является проектирование привода цепного конвейера, который состоит как из простых стандартных деталей, так и из деталей, форма и размеры которых определяются на основе конструкторских, те
... Результаты расчётов сводятся в табл.1.2 и являются исходными данными для всех следующих расчётов. Таблица 1.2 Результаты кинетического и силового расчётов привода Параметры № вала N, кВт ω рад/с М,Нм 1 16,5 102,05 161,7 2,98 47,68 2 15,7 34,24 458,5 4 3 14,9 8,56 1740 4 4 14,3 2,14 6682 1 5 13 2,4 6542 2. Расчет ...
... – КПД зубчатой цилиндрической прямозубой передачи; η3 = 0,99 – КПД пары подшипников качения, η4 = 0,8 – КПД цепной передачи Потребная мощность электродвигателя Частота вращения вала двигателя nЭ = n3 ∙ uРЕД ∙ uЦИЛ Где: – частота вращения вала конвейера; uРЕД = 16…50 – интервал передаточных чисел редуктора; uЦИЛ = 2,5…5 – интервал передаточных ...
... 12,4-14,5 мм. Назначаем dк = 25 мм. dбк ≥ 25+3 ּ 1 = 28 мм. Назначаем dбк = 28 мм. dп = 25-3 ּ 1,5 = 21,5 мм. Назначаем dп = 20 мм. dбп ≥ 20+3 ּ 1,5 = 24,5 мм. Назначаем dбп = 25 мм. 3.2.3 Проверочный расчет валов Плоскость YOZ (вертикальная). Для определения реакции Rb воспользуемся уравнением (3.4) - Fr1 ּ 28+Fa2 ּ 45+Fr2 ּ 39+Fa1 ...
0 комментариев