3.2.8 Расчетное контактное напряжение , МПа
σн= Z H* Z E Z ε*
где Z H- коэффициент, учитывающий форму сопряженных поверхностей зубьев в полюсе зацепления, определяется согласно источнику
[1, стр45,рис.13]:
Z H=2,47
Z E- коэффициент, учитывающий механические свойства материалов сопряженных зубчатых колес , для стальных колес
Z E=190
σ HP- допускаемое контактное напряжение
σн= 2,47*190*0,83 *МПа
σ HP=0,45*( σ HP1+ σ HP2)
σ HP=0,45*(1139+1708)=1281,15МПа
σн≤ σ HP : 973,8≤1281,15
3.3Проверочный расчет цилиндрической зубчатой передачи на выносливость зубьев по изгибу.
3.3.1 Коэффициент K Fβ,учитывающий неравномерность распределения нагрузки по длине контактных линий при расчете зубьев на выносливость
при изгибе .Выбираем согласно источнику [1, стр45,рис.14]:
K Fβ=1,19
3.3.2 Коэффициент K Fα, учитывающий распределение нагрузки между зубьями .При расчетах на изгибную прочность полагают, что влияние погрешностей изготовления на распределение нагрузки между зубьями то же, что и в расчетах на контактную прочность , т.е.
K Fα= K Нα=1,08
3.3.3 Коэффициент, учитывающий динамическую, возникающую в зацеплении.
W FV- удельная окружная динамическая сила при расчете на изгиб,Н/м
W FV=σF*g 0*V*
σF- коэффициент, учитывающий влияние вида зубчатой передачи и модификации профиля зубьев,Н/м Согласно источнику[1, стр42,табл.16]:
σF=0,006
W FV=0,006*56*0,739*
3.3.4Удельная расчетная окружная сила
3.3.5 Коэффициент Y FS, учитывающий форму зуба и концентрацию напряжения.
Согласно источнику[1, стр46,рис.15]: Y FS1=4,09
Y FS2=3,67
3.3.6 Коэффициент, учитывающий перекрытие зубьев.
Для косозубых передач :
Так как εβ=0,6 ‹1: Yε= 0.2+0,8/ εα
Yε= 0.2+0,8/ 1,6=0,7
3.3.7 Коэффициент, учитывающий наклон зуба
Yβ=1- εβ*β/1200≥0,7
Yβ=1- 0,6*9,069/1200=0,955≥0,7
3.3.8Расчетное напряжение изгиба на переходной поверхности зуба:
σF= Z FS1* Zβ1* Z ε1*≤ σFP
Обычно расчет проводится для менее прочного зубчатого колеса передачи, которое определяется из сравнения отношений для шестерни и колеса:
σF= 4,09* 0,7* 0,955*≤ σFP
372,83≤520
3.4 Расчет зубчатой передачи на контактную прочность при действии максимальной нагрузки
σнmax= σн* σнPmax
Tmax =β1-кратность кратковременных пиковых перегрузок в приводе
TH
β1= 1,25…1,35
Принимаем β1=1,3
σнmax= 973,8* МПа
σнPmax =2.420МПа
σнmax≤ σнPmax
1.110,3≤2.420
3.5 Расчет зубчатой передачи на прочность при изгибе максимальной нагрузкой.
σFmax= Tmax ≤ σFPmax
TH
σF=372.83
Tmax =1.3
TH
σFPmax=1.171МПа
σFmax= 372,83*1,3=484,68МПа
σFmax≤ σFPmax
484,68≤1.171
3.6 Силы в зацеплении тихоходной цилиндрической зубчатой передачи.
-окружная сила:
Ft1=
Ft1=
-радиальная сила
Fr= Ft*tg αW/ cosβ
Fr1=4.879*0,6/0,987=1.779 Н
- осевая сила
Fа= Ft* tgβ
Fа1=4.879*0,16=780,6Н
3.7 Силы в зацеплении быстроходной цилиндрической зубчатой передачи.
-окружная сила:
Ft2=
Ft1=
-радиальная сила
Fr2= Ft2*tg αW/ cosβ
Fr2=19664*0,36/0,965=7336 Н
- осевая сила
Fа2= Ft2* tgβ
Fа2=19664*0,159 = 3126 Н
4. Выбор смазки.
Выбор кинематической вязкости масла для передач зацеплением.
При контактном напряжении σН=973,8; окружной скорости V=0,739 м/с согласно источнику [1, стр96,табл.36]: рекомендуется кинематическая вязкость 60 мм2/с при температуре 50 0С
Для быстроходной передачи при скорости V=2,32 и напряжении σН=973,8 рекомендуется вязкость 50 мм2/с.
Выбираю среднее значение кинетической вязкости 55 мм2/с.Этой вязкости соответствует марка масла, согласно источнику [1, стр97,табл.37] И50А(индустриальное)
Литература
1 Устиновский Е.П., Шевцов Ю.А., Яшков Ю.К. и др. Многовариантное проектирование зубчатых цилиндрических, конических и червячных передач с применением ЭВМ: Учебное пособие к курсовому проектированию по деталям машин.–Челябинск: ЧГТУ, 1995.–102с.
2 Дунаев П.Ф. , Леликов О.П.Конструирование узлов и деталей машин – М.: Высшая школа, 1978.–352с.
3 Проектирование механических передач: Учебно-справочное пособие для вузов С.А. Чернавский, Г.А. Снесарев, Б.С. Козинцов и др.– 5–е изд., перераб. и доп.–М.: Машиностроение, 1984.–560с., ил.
4 Пелипенко И.А., Шевцов Ю.А. Разработка компоновки редуктора: Учебное пособие к курсовому проекту по деталям машин.–Челябинск: ЧГТУ, 1991.–41с
... проекта по “Деталям машин” были закреплены знания, полученные за прошедший период обучения в таких дисциплинах как: теоретическая механика, сопротивление материалов, материаловедение. Целью данного проекта является проектирование привода цепного конвейера, который состоит как из простых стандартных деталей, так и из деталей, форма и размеры которых определяются на основе конструкторских, те
... Результаты расчётов сводятся в табл.1.2 и являются исходными данными для всех следующих расчётов. Таблица 1.2 Результаты кинетического и силового расчётов привода Параметры № вала N, кВт ω рад/с М,Нм 1 16,5 102,05 161,7 2,98 47,68 2 15,7 34,24 458,5 4 3 14,9 8,56 1740 4 4 14,3 2,14 6682 1 5 13 2,4 6542 2. Расчет ...
... – КПД зубчатой цилиндрической прямозубой передачи; η3 = 0,99 – КПД пары подшипников качения, η4 = 0,8 – КПД цепной передачи Потребная мощность электродвигателя Частота вращения вала двигателя nЭ = n3 ∙ uРЕД ∙ uЦИЛ Где: – частота вращения вала конвейера; uРЕД = 16…50 – интервал передаточных чисел редуктора; uЦИЛ = 2,5…5 – интервал передаточных ...
... 12,4-14,5 мм. Назначаем dк = 25 мм. dбк ≥ 25+3 ּ 1 = 28 мм. Назначаем dбк = 28 мм. dп = 25-3 ּ 1,5 = 21,5 мм. Назначаем dп = 20 мм. dбп ≥ 20+3 ּ 1,5 = 24,5 мм. Назначаем dбп = 25 мм. 3.2.3 Проверочный расчет валов Плоскость YOZ (вертикальная). Для определения реакции Rb воспользуемся уравнением (3.4) - Fr1 ּ 28+Fa2 ּ 45+Fr2 ּ 39+Fa1 ...
0 комментариев