1.2 Методы гидролиза

Существует большое разнообразие методов и технологических приемов гидролиза растительного сырья, что связано со значительным числом факторов, влияющих на кинетику процесса. На скорость реакции гидролитического расщепления гликозидных связей полисахаридов и реальный выход моносахаридов оказывают влияние химическая микрокинетика и макрокинетические факторы , которые связаны с технологической характеристикой сырья, с техническими приемами гидролиза и конструкцией оборудования [1].

Из кинетических факторов на процесс гидролиза основное влияние оказывают реакционная способность и агрегатное состояние полисахаридов, активность и концентрация катализатора и температура процесса.

При гидролизе растительного сырья разбавленными кислотами процесс гидролиза легкогидролизуемых полисахаридов начинается в гетерогенных условиях и завершается в гомогенных. Гидролиз трудногидролизуемых полисахаридов протекает в гетерогенных условиях, хотя при этом не удается определить границу раздела фаз из-за проникновения раствора катализатора в субмикроскопическую структуру клеточных стенок растительного сырья. Повышение удельной поверхности растительного сырья в результате тонкого механического размола приводит к росту скорости гидролиза полисахаридов. Однако при таком размоле может происходить не только увеличение поверхности, но и активация полисахаридов путем нарушения их надмолекулярной структуры. Перевод полисахаридов в раствор повышает их реакционную способность.

При автогидролизе катализатором процесса является уксусная кислота, образующаяся в результате реакции деацетилирования гемицеллюлоз.

При классификации методов гидролиза по температуре выделен способ активации полисахаридов при замораживании (-10 0С), низкотемпературный гидролиз (25-45 0С) концентрированными кислотами, гидролиз разбавленными кислотами при повышенной температуре (100-190 0С) и высокотемпературный гидролиз (200-250 0С). На практике с целью увеличения скорости процесса гидролиз растительного сырья проводят при повышенной температуре, т.е. используется термический метод подвода энергии и каталитической активации полисахаридов. Наряду с этим в стадии проработки находятся механохимический и радиационный методы повышения реакционной способности полисахаридов при гидролизе. Все промышленные режимы гидролиза осуществляются в неизотермических условиях.

В химической кинетике выделяют гомофазные и гетерофазные процессы. В гомофазных процессах все исходные, промежуточные и конечные вещества находятся в пределах одной фазы; в гетерофазных процессах компоненты образуют более чем одну фазу.

Из макрокинетических факторов на выход моносахаридов основное влияние оказывают диффузионные, гидродинамические и геометрические факторы, а также величина гидромодуля. Если кинетика процесса определяется скоростью диффузионного сближения реагентов, то реакция протекает в диффузионной области. В кинетической области скорость процесса определяется скоростью химических превращений реагирующих веществ. При гидролизе мелкодисперсного сырья скорость диффузионной пропитки гидролизуемых частиц раствором катализатора значительно выше скорости гидролиза. Размер частиц гидролизуемого сырья влияет как на гидродинамику перколяционного процесса, так и на диффузионные процессы выведения сахаров из зоны реакции [2].

Маломодульный гидролиз обычно поводят при величине гидромодуля по свободно удерживаемой влаге. К маломодульному можно отнести гидролиз при рабочем запасе жидкости, соответствующем уровню сырья. Перколяционный гидролиз проводят как при коротком гидромодуле (9-12), так и при высоком модуле (14-18).

Процесс гидролиза может проводиться в статических условиях или в потоке. Под статическими условиями в химической кинетике понимают такие условия, при которых отсутствует принудительный поток реагирующих веществ в заданных направлениях. Основные варианты процесса гидролиза проводятся в динамических условиях: перколяционный гидролиз в потоке раствора катализатора; непрерывный гидролиз в потоке твердой фазы и жидкой фазы.

На процесс вытеснения сахара большое влияние оказывает агрегатное состояние фазы между частицами гидролизуемого сырья. По этому признаку различают парофазный и жидкофазный процессы. Химическая реакция гидролиза при этом протекает в толще гидролизуемых частиц и гидролизуемые полисахариды находятся в твердой фазе, а раствор катализатора − в жидкой фазе.

В химической кинетике рассматривают замкнутые (закрытые) и незамкнутые (открытые) системы. В замкнутых системах возможен обмен энергией с окружающей средой, но не веществом. В эти системы во время реакции не проводится подача исходных веществ и выведение продуктов реакции. Примером замкнутой системы может служить одноступенчатый гидролиз в статических условиях.

Незамкнутые системы обмениваются с окружающей средой веществом и энергией. В незамкнутых системах в реактор подают реагенты или катализаторы либо выдают продукты реакции. К незамкнутым системам в зависимости от технических признаков можно отнести многоступенчатый, перколяционный и непрерывный методы гидролиза [3].

При одноступенчатом гидролизе загрузка сырья и раствора катализатора в реактор проводится до начала реакции, выгрузка всех продуктов реакции − после полного завершения процесса. При многоступенчатом и перколяционном гидролизе сырье и раствор кислоты также загружаются в гидролизаппарат до начала реакции, но гидролизат из реактора отбирают до завершения процесса гидролиза. При перколяционном гидролизе подача раствора катализатора и выдача гидролизата из зоны реакции осуществляется непрерывно.

При периодической загрузке сырья в гидролизаппарат производится многократное повторение цикла: загрузка сырья – гидролиз – выгрузка твердого остатка. Для повышения производительности основного технологического оборудования и стабилизации параметров процесса более предпочтительны непрерывная подача сырья в гидролизаппарат и непрерывная выдача твердого остатка.

На выход моносахаридов при перколяционном гидролизе влияет продолжительность их пребывания в зоне реакции, которая в свою очередь зависит от скорости выдачи гидролизата. Изменяя конструкции устройств для подачи раствора катализатора и выдачи гидролизата, обеспечивают направление жидкостных потоков в вертикальном или горизонтальном направлении. Более благоприятные гидродинамические условия обеспечивает перколяция с восходящим током жидкости.

Технологические параметры гидролиза растительного сырья разбавленными кислотами в значительной степени зависят от реакционной способности гидролизуемых полисахаридов и вида целевой продукции.

В двухстадийных режимах перколяционного гидролиза боле полно учитывается различие в реакционной способности гемицеллюлоз и целлюлозы. По двухстадийным режимам проводится раздельная выдача гемицеллюлозного гидролизата или фурфуролсодержащих паров и гексозного гидролизата.

В настоящее время в промышленных условиях на предприятиях дрожжевого профиля применяют методы гетерогенно-гомогеного жидкофазного высокомодульного одно- и двухстадийного перколяционного гидролиза растительного сырья разбавленной минеральной кислотой в аппаратах периодического действия [1].

1.3 Сырье для производства кормовых дрожжей

Получение кормовых дрожжей основано на максимальной скорости образования дрожжами биомассы в питательной среде, содержащей все элементы, необходимые для их жизнедеятельности. В промышленных условиях для производства кормовых дрожжей применяют следующие питательные среды [3]:

1. Пентозно-гексозные гидролизаты, получаемые при гидролизе всех полисахаридов, содержащихся в растительном сырье. Эти гидролизаты представляют собой сложную смесь различных органических соединений, утилизируемых дрожжеподобными грибами. К ним относятся гексозные (глюкоза, фруктоза, манноза, галактоза) и пентозные (ксилоза, арабиноза) сахара. В качестве энергетического материала дрожжи используют органические кислоты − уксусную и частично левулиновую.

2. Гексозные гидролизаты, получаемые гидролизом целлолигнина, который остается после удаления пентозанов при получении фурфурола или ксилита.

3. Предгидролизаты, состоящие из продуктов гидролиза гемицеллюлоз. Они получаются при водном или кислотном гидролизе гемицеллюлоз древесины. Водные предгидролизаты, содержащие декстрины, предварительно инвертируются.

4. Сульфитный щелок, получаемый при варке хвойной и лиственной древесины и содержащий гексозы, пентозы и органические кислоты.

5. Барда гидролизно- и сульфитно-спиртовых заводов, состоящая из пентоз и органических кислот.

6. Отеки, получаемые при производстве кристаллической ксилозы и глюкозы из различных растительных отходов.

1.4 Стадии получения кормовых дрожжей

Для выращивания кормовых дрожжей необходимо получить биологически доброкачественные субстраты, что осуществляется в ходе технологического процесса подготовки гидролизатов и других сред к биохимической подготовке. Эта подготовка состоит в инверсии декстринов и олигосахаридов до моносахаридов, нейтрализация избыточной кислотности, осветления, очистки, охлаждения до оптимальной температуры и освобождения от вредных веществ, неблагоприятно отражающихся на размножении и росте дрожжей [1].

Необходимо отметить ряд особенностей подготовки субстратов к выращиванию кормовых дрожжей: обогащение среды фосфором, азотом и калием, подача аммиачной воды в дрожжерастильные чаны для поддержания pH среды, более глубокое охлаждение, подбор микроорганизмов и получение чистой культуры, разбавление сусла до оптимальной концентрации редуцирующих веществ, подготовка и очистка воздуха. Для нормальной жизнедеятельности дрожжей и интенсивного биосинтеза белка субстрат должен содержать кроме гексозных и пентозных сахаров также азот, фосфор, калий и микроэлементы.

Для выращивания кормовых дрожжей необходимо подбирать культуры микроорганизмов, дающих в оптимальных условиях максимальный выход дрожжевой массы, синтезирующих многие витамины и другие биологически активные вещества, устойчивых к вреднодействующим веществам гидролизной среды, способных полностью использовать все ее питательные вещества. В дрожжевой промышленности ведется работа по отбору из производственных сред новых культур, обладающих полезными свойствами. После размножения в стерильных условиях продуктивные культуры внедряют в производство. Для стабильного удерживания в дрожжерастильных аппаратах урожайной культуры дрожжей применяется подсев чистой культуры, выращиваемой в специальном отделении. Чистая культура − это дрожжи, не содержащие посторонних примесей. Приготовление чистой культуры заключается в постепенном культивировании дрожжей по особому режиму, в стерильных условиях, начиная от небольшого числа клеток в лабораторной пробирке и кончая большим количеством дрожжей в дрожжерастильных аппаратах. Аппараты, в которых происходит выращивание чистой культуры, снабжены воздухораспределительной системой, змеевиками для пологрева или охлаждения питательной среды и барботерами для пропарки [3].

На скорость накопления биомассы дрожжей большое влияние оказывает концентрация РВ в субстрате. В промышленных условиях при содержании РВ выше 1,-2,0% происходит неполная их утилизация и выращивание дрожжей идет медленно. Целесообразнее разбавлять сусло последрожжевой бражкой с целью более глубокого использования пентозных сахаров, минеральных солей, повышения выхода товарных дрожжей, экономии свежей воды и сокращения объема сточных вод. Процесс выращивания кормовых дрожжей осуществляется при энергичном потреблении кислорода, это процесс аэробный. Количество потребляемого кислорода достигает 80% от получаемого сухого вещества. Так как дрожжи усваивают только мелкодиспергированный, растворенный в жидкой среде кислород, количество его должно быть достаточно для нормального размножения и роста дрожжей. Поэтому с целью получения максимальных выходов биомассы выращивание дрожжей ведется при непрерывном и интенсивном продувании среды воздухом [2].

На скорость прироста дрожжей влияет также перемешивание окружающей среды. Хорошее перемешивание способствует диспергированию и растворению кислорода, ускорению проникновения его и питательных веществ в дрожжевые клетки, а также удалению продуктов их обмена. В дрожжерастильных аппаратах устанавливают разнообразные вохдухораспределительные системы: барботажную, систему с механическими средствами распыления и турбоаэрационную, эрлифтную, вибрационную.

Барботажная система воздухораспределения основана на принципе распыления воздуха в начале ввода его в среду. Однако уменьшение сечения отверстий для воздуха и увеличение их количества, а также применение пористых материалов привело к значительному увеличению мощности электродвигателей воздуходувных машин. Барботажная система не обеспечивает досиаточного диспергирования воздуха и интенсивного перемешивания среды, что приводит к неравномерному распределению дрожжей по высоте аппарата и снижению выхода биомассы.

Для усиления диспергирования воздуха в жидкости применяют ситемы с механическим или турбоаэрационным распылением воздуха. Измельчение крупных пузырьков воздуха в жидкости осуществляется с помощью различных вращающихся приспособлений. Однако даже применение многоярусных мешальных устройств с большим числом оборотов не обеспечивает нужной вертикальной циркуляции жидкости и воздуха.

Одной из лучших воздухораспределительных систем является эрлифтная. При этой системе воздухораспределения давление воздуха не теряется при вводе в дрожжерастильный аппарат, а используется для создания циркуляционных потоков, выравнивающих концентрацию воздуха, дрожжей, питательных веществ по всей высоте и объему аппарата. При этом неиспользованный воздух увлекается нисходящим потоком, что приводит к снижению расхода воздуха на выращивание дрожжей. Применяется также вибрационная система воздухораспределени. Преимущество этой системы состоит в том, что под влиянием выращивающегося под давлением воздуха вибрирующая пластинка производит колебательные движения, дающие наибольший эффект контактирования воздуха со средой [1].

Также применяются дрожжерастильные чаны с системой шайбового воздухораспределения в основном для выращивания дрожжей на послеспиртовой барде. Недостатком работы чанов на этой конструкции является неполное использование емкости вследствие образования мертвой зоны под шайбой, недостаточная диспергация воздуха, низкий коэффициент использования кислорода воздуха, значительный расход электроэнергии на приведение во вращение шайбовых устройств.

Одной из эффективных конструкций дрожжерастильных аппаратов является аппарат системы ВНИИгидролиза высокой производительности с вибрационно-рассредоточенной системой воздухораспредления и встроенным флотатором. В этом аппарате происходит одновременно непрерывный процесс накопления биомассы и отделение дрожжевой суспензии методом флотации.

Воздух, подаваемый в дрожжерастильные аппараты, должен быть максимально чистым и не зараженным посторонними микроорганизмами. Для освобождения воздуха от механических примесей на всасывающей линии ставят жалюзийные решетки ли фильтры, в которых происходит обеспыливание [4].

По техническим условиям, товарные кормовые дрожжи должны быть получены в сухом виде с содержанием 8-10% влаги. Для этого дрожжевую суспензию, отбираемую из дрожжерастильных чанов, сгущают, выпаривают и высушивают. Наиболее рациональным способом сгущения дрожжевой суспензии является флотирование и сепарирование. Флотационный способ основан на способности дрожжевых клеток концентрироваться в пене при продувании среды воздухом, т.е. флотироваться в пену из жидкости. Жидкость при этом обедняется дрожжами. Флотаторы применяются для сгущения дрожжевой суспензии вместо сепараторов первой группы. Флотационный метод выделения дрожжей имеет ряд преимуществ по сравнению с сепарационным: сокращается количество дорогостоящих сепараторов, следовательно и капиталовложения, сокращаются эксплуатационные расходы на ремонт сепараторов, затраты электроэнергии, надежно обеспечивается непрерывный процесс выделения дрожжей из бражки; дрожжи, получаемые способом флотирования, имеют более высокие показатели по содержанию белка, по вкусу, цвету и зольности. Извлечение дрожжей из бражки и концентрирование их происходит во флотаторе.

Для улучшения качества кормовых дрожжей по вкусу, цвету и содержанию в них белка дрожжевую суспензию промывают водой при помощи водоструйного насоса эжектора, который устанавливается между двумя группами сепараторов [1].

Для снижения расхода пара на сушку дрожжей концентрация сгущенной на сепараторах дрожжевой суспензии может быть повышена на вакуум-фильтрах. На вакуум-фильтрах дрожжевая суспензия сгущается до 20-22% сухих веществ. Более производительным, простым и удобным является способ упаривания дрожжевой суспензии в системе выпарных аппаратов. Однако перед поступлением в вакуум-выпарной аппарат дрожжевой концентрат поступает в плазмолизатор для снижения пенообразования в испарителях выпарных аппаратов, а также для исключения образования сгустков дрожжей, которые отрицательно влияют на процесс упаривания, где нагревается глухим паром с последующим выдерживанием с целью гомогенизации суспензии. При плазмолизе также обеспечивается подавление жизнедеятельности вегетативных клеток микробной биомассы. В качестве плазмолизаторов используют преимущественно теплообменники труба в трубе. Плазмолиз и дегазация стабилизируют процесс вакуум-выпарки дрожжевой суспензии в связи с уменьшением пенообразования в сепарационной камере выпарного аппарата и снижением способности дрожжей к агломерации с образованием комков и осадков.

Наибольшее распространение получила двухкорпусная вакуум-выпарная установка, работающая по непрерывному способу с принудительной циркуляцией. Принцип работы выпарных аппаратов с принудительной циркуляцией обеспечивает лучшие условия и большие скорости циркуляции упариваемой жидкости, а следовательно, и более высокий коэффициент теплопередачи. Установка состоит из выпарных аппаратов с выносными трубчатыми подогревателями, испарителей, связанных между собой соединительной и циркуляционной трубами, барометрического конденсатора, вакуум-насоса для создания вакуума в выпарной системе и насосов для принудительной циркуляции дрожжевой суспензии. Аппараты с выносными подогревателями легкодоступны для чистки или ремонта.

Для получения сухих дрожжей, пригодных к длительному хранению и перевозкам, применяются различные способы сушки. На заводах малой производительности, работающих преимущественно на спиртовой барде, используются вальцовые сушилки с испарительной способностью до 1 т влаги в час. На заводах большой мощности применяются более производительные распылительные сушилки с испарительной способностью от 4 до 15 т влаги в час. Сушка дрожжевого концентрата должна происходить в условиях, в которых не разрушались бы содержащиеся в дрожжевых клетках аминокислоты, витамины и другие ценные вещества [2].

Дрожжи, высушенные на вальцовых сушилках, имеют вид тонких, хрупких, полупрозрачных листочков желтого или коричневого цвета. В таком виде они имеют небольшую объемную массу, что затрудняет их упаковку. Поэтому сухие дрожжи подают в мельницу, измельчающую их до состояния муки. Недостатком вальцовых сушилок является также то, что дрожжи в процессе сушки на поверхности барабана подвергаются действию температуры 150-160 0С, что приводит к частичному разложению белка, аминокислот и витаминов. В производстве кормовых дрожжей наибольшее распространение получили распылительные сушилки. Процесс сушки основан на тонком распылении дрожжевого концентрата в камере, заполненной горячим воздухом. Мелкие капли дрожжевого концентрата в этих условиях быстро высыхают и в виде светло-желтого порошка падают на дно сушилки.

В некоторых сушилках дрожжевой концентрат распыляется при помощи форсунок. В распылительных сушилках белок и аминокислоты лучше сохраняются от термического разложения, и выход белка возрастает на 5% по сравнению с выходом пи сушке на вальцовых сушилках.

Для упаковки сухих кормовых дрожжей применяют клапанные или открытые бумажные мешки. Открытые мешки после загрузки зашивают на строчной машине или завязывают, а для клапанных эта операция исключается. В бумажные мешки загружают 20-30 кг дрожжей [3].

В настоящее время большое внимание уделяется вопросу витаминизации кормовых дрожжей, так как эффективность их применения в сельском хозяйстве зависит от содержания не только белка, но и витаминов. Основным способом обогащения их витамином D2 в производственных условиях является облучение живых дрожжей ультрафиолетовыми лучами перед сушкой. Благодаря облучению содержащийся в дрожжах провитамин эргостерин превращается в витамин D2. Облучение происходит в витаминизаторах или облучателях различной конструкции через стенки кварцевых трубок, по которым циркулирует дрожжевая суспензия, или прямым воздействием на дрожжи ультрафиолетовых лучей [2].


Информация о работе «Проект дрожжевого цеха»
Раздел: Промышленность, производство
Количество знаков с пробелами: 71509
Количество таблиц: 2
Количество изображений: 0

Похожие работы

Скачать
28082
12
12

... для промышленной переработки по сравнению с 1995 годом на 22 %, производство молочных консервов увеличилось на 3 %, выработка сыров снизилась на - 13 %.сухих обезжиренных молочных продуктов - 16 %, цельномолочной - на 7 %. Сокращение сырьевых ресурсов вызвало снижение объемов производства молочных продуктов (в 1996 г. по сравнению 1995 г.). Так производство масла животного составило 89%, сыра ...

Скачать
33939
26
0

... доставка блюд кафе на дом Изм. Лист Лист № документа Подпись Дата Разработал Проект мучного цеха кафе “Калачик” на 100 мест с фито баром на 20 мест Лит. Лист Листов Проверил 1 Руководит. 452 Т Утверждаю ...

Скачать
105418
30
0

... . Здания и сооружения повышенной пожароопасности размещены с подветренной стороны по отношению к остальным зданиям. Данным проектом предусмотрено на территории винзавода произвести реконструкцию неиспользуемых помещений под цех выдержки, обработки и розлива столового белого вина. Реконструируемое здание одноэтажное, сложной конфигурации, состоит из нескольких помещений. Общая протяженность ...

Скачать
20090
11
1

... количество ионов кальция, натрия, брома, йода, калия. Такие ингаляции годаздо эффективнее, чем в санаторном 2. Характеристика заведения   Характеристика предприятия Проектируемый ресторан в курортной зоне с реализацией блюд украинской кухни будет называться "Чумацький Шлях". Интерьер создан в украинском стиле с использованием декоративных элементов. Состав помещений для посетителей холл ...

0 комментариев


Наверх