8.2. Источники загрязнения биосферы.
Определение и структура биосферы.
Согласно современным представлениям, биосфера — это своеобразная оболочка земли, содержащая всю совокупность живых организмов и ту часть вещества планеты, которая находится в непрерывном обмене с этими организмами.
По физическим природным условиям биосфера может быть подразделена на три среды: атмосферу, гидросферу и литосферу.
Атмосфера — газообразная оболочка планеты, состоящая из смеси различных газов, водяных паров и пыли. Через атмосферу осуществляется обмен вещества Земли с Космосом. Земля получает космическую пыль и метеоритный материал, теряет самые легкие газы: водород и гелий. Атмосфера земли насквозь пронизывается мощной радиацией Солнца, определяющей тепловой режим поверхности планеты, вызывающей диссоциацию молекул атмосферных газов и ионизацию атомов. Атмосферу делят на тропосферу, стратосферу, мезосферу, термосферу, экзосферу. Обширная область разряженной верхней атмосферы состоит преимущественно из ионов. Эта область обозначается как ионосфера. Большая часть массы атмосферы имеет относительно однородный азотно-кислородный состав. В тропосфере во взвешенном состоянии присутствуют также твердые и жидкие частицы, которые, как правило, называют аэрозолями. Принято выделять постоянные и переменные компоненты атмосферы в зависимости от длительности их пребывания в атмосфере. Таким примером является вода, находящаяся в атмосфере в разных формах и концентрациях. В то же время такое подразделение составных частей атмосферы является относительным, так как в течение длительных интервалов времени все компоненты атмосферы оказываются переменными.
Главными составными частями атмосферы являются азот, кислород аргон и углекислый газ.
Одним из важнейших компонентов атмосферы является озон О3 .Его образование и разложение связаны с поглощением ультрафиолетовой радиации Солнца, которая губительна для живых организмов. Для образования озона необходимы свободные атомы кислорода, которые возникают при разложении молекул О2 под воздействием квантов излучения в ультрафиолетовой области.
Гидросфера — совокупность всех вод Земли: материковых (глубинных, почвенных, поверхностных), океанических, атмосферных. Как особая водная оболочка Земли, здесь рассматриваются лишь воды, находящиеся на поверхности планеты — материковые и океанические. Вследствие высокой подвижности воды возникают повсеместно в различные природные образования. Они находятся в виде паров и облаков в земной атмосфере, формируют океаны и моря, существуют в замороженном состоянии в высокогорных районах континентов и в виде мощных ледяных панцирей покрывают полярные участки суши. Атмосферные осадки проникают в толщи осадочных пород, образуя подземные воды. Вода способна растворять в себе многие вещества, в связи с этим воды гидросферы можно рассматривать в качестве естественных растворов разной степени концентрации.
Подавляющая часть массы природных вод (94%) — это воды Мирового океана, представляющего собой уникальную природную систему. Здесь происходит грандиозный процесс обмена и трансформации энергии и вещества нашей планеты. Различные физические, химические и биологические процессы объединяются, образуя единую природу океана — древнейшую область биосферы Земли. Со времени образования океана протекало изменение его природы под воздействием различных природных процессов: солнечного излучения, геологических и геохимических факторов и, что весьма важно, под влиянием биологических процессов.
Наиболее чистые атмосферные воды содержат 10-50 мг/л растворенных веществ. Морская (океаническая) вода представляет собой раствор, содержащий в среднем в 1 кг 35 г вещества. Можно считать, что в морской воде присутствуют все химические элементы таблицы Менделеева. Однако преобладающая часть растворенных веществ представлена немногими химическими элементами: натрием, магнием, кальцием, хлором, углеродом, серой. Они находятся в морской воде в виде ионов различного типа.
Литосфера — верхняя «твердая» оболочка Земли, постепенно переходящая с глубиной в сферы с меньшей прочностью вещества. Включает земную кору и верхнюю мантию Земли. Мощность литосферы — 50-100 км, в том числе земной коры — до 75 км на континентах и 10 км под дном океана (рис. 2.3). Химический состав земной коры определяют немногие элементы. Всего лишь восемь элементов (кислород, кремний, алюминий, железо, кальций, магний, натрий, калий) слагают основную ее массу. Ведущим и наиболее распространенным элементом является кислород, составляющий едва ли не половину массы земной коры (~ 47,3%) и 92% ее объема. Он прочно связан химически с другими элементами в главных породообразующих минералах. Земная кора сложена горными породами различного типа и различного происхождения. На осадочные породы приходится 9,2%, на метаморфические — 20% и на магматические — 70,8%. Поверхность континентов на 80% занята породами осадочными, а океаническое дно — почти полностью свежими осадками как продуктами сноса материала континентов и деятельности морских организмов. Земная кора первоначально возникла как продукт выплавления материала первичной мантии, который в дальнейшем был существенно переработан в биосфере под влиянием воздуха, воды и деятельности организмов. Континентальная часть земной коры в течение длительной геологической истории находилась в ту или другую эпоху в области биосферы, что наложило свой отпечаток на облик, состав и распространенность осадочных горных пород, и сосредоточенных в них месторождений полезных ископаемых в виде угля, нефти, горючих сланцев, кремнистых и карбонатных пород, связанных в прошлом с жизнедеятельностью организмов. Поэтому континентальная земная кора имела и имеет прямое и косвенное отношение к биосфере.
8.3.Основные загрязняющие компоненты выбросов и стоков.
Загрязнение воздуха.
В воздухе насчитываются сотни загрязняющих веществ. Наибольшее негативное влияние на атмосферу, породившее такие проблемы, как «парниковый эффект», «озоновые дыры» и кислотные дожди, оказывают следующие классы соединений: оксиды углерода; оксиды серы; оксиды азота; летучие органические вещества метан СН4, бензол С6Н6; взвешенные твердые частицы – пыль, сажа, асбест, соли металлов, диоксины, пестициды и др.
Парниковый эффект считают причиной глобального потепления, которое наблюдалось в последние 20 лет XX столетия. Так, 1998 г. Побил все рекорды: в Нью-Йорке в течение 40 дней температура не падала ниже 31 °С, суровая засуха привела к тому, что в США впервые сбор зерна упал ниже потребностей страны. На Ямайке пронесся страшный ураган, лишив крова 500 тыс. человек. Муссонные дожди затопили 2/3 территории Бангладеш – 25 млн. людей потеряли жилище. В Антарктиде откололся гигантский айсберг длиной 130 км. Жарко было и в Европе.
Следствие парникового эффекта, вызывающее наибольшие опасения, - это подъем уровня Мирового океана. Международная конвенция климатологов в Австрии (1988) прогнозировала к 2030 – 2050 гг. повышение температуры на 1,5 – 4,5 °С, что может вызвать подъем уровня океана на 50 – 100 см, а к концу XXI века - на 2 м. Трудно предсказать все страшнее последствия повышения уровня моря. Людей ждет не только «всемирный потоп», могут усилиться засухи и пожары. Огромные лесные массивы в результате сгорания станут дополнительными источниками углерода, что усугубит потепление.
Пылевое облако настолько снизило солнечную радиацию, что похолодание привело к увеличению снежного покрова. Это, в свою очередь, вызвало гибель на близлежащей территории 90 % молодых зайчат, а через 3 года было зафиксировано снижение поголовья рыси, которая погибала из-за недостатка пищи.
И все-таки из-за неопределенности ситуации нельзя отказываться от стратегического планирования, мириться с уничтожением лесов, выбросом в атмосферу парниковых газов.
Озоновый столб – это количество озона, через которое ультрафиолетовые лучи должны пройти из верхних слоев атмосферы до поверхности Земли в данном пункте.
Причины появления «озоновых дыр» объясняют по-разному. Возможно, это связано с естественными циклами в природе, на которые раньше не обращали внимания. Первоначально основной причиной разрушения озонового слоя считали воздействие сверхзвуковых транспортных самолетов, которые загрязняют стратосферу водой и оксидами азота, способными разрушать озон.
Но высокая стоимость таких полетов настолько замедлила развитие сверхзвуковых перевозок, что теперь они не представляют существенной угрозы для озонового экрана.
Выхлопные газы автомобилей и удобрения в почве – тоже источники оксидов азота. Известно, что бром в виде метилбромида, широко используемый в сельском хозяйстве, может разрушать озон. Сколько его улетучивается в атмосферу, пока неизвестно. Предполагают, что большие количества таких промышленных химикатов, как четыреххлористый углерод и метилхлороформ, могут выделять заметные количества хлора.
Кислотные дожди являются другим видом загрязнения атмосферы, не признающим государственных границ. Во многих странах (вначале в Скандинавии, а затем в США, Канаде, Северной Европе, Японии и др.) ученые обнаружили, что дождевая вода, казалось бы, самая чистая в природе, содержит большое количество кислот. Причина этого – выбросы в атмосферу оксидов серы и азота.
Оксиды серы и азота поступают в воздух при сжигании ископаемых видов топлива, первое место среди которых занимает каменный уголь (до 90 %), на втором месте – нефть, значительно уступает им газ. Оксиды азота образуются в основном при сжигании топлива автомобильным транспортом.
При сжигании угля и нефти образуются диоксид и триоксид серы.
Образовавшийся триоксид реагирует с водяным паром, образуя серную кислоту.
Серная кислота присутствует в воздухе в виде легкого тумана, состоящего из крошечных капель.
Сгорая, топливо образует также оксиды кальция и железа, которые вступают в реакцию с серной кислотой.
Количество содержащихся в городском воздухе твердых частиц сульфатов кальция и железа и капелек серной кислоты может достигать 20 %. Ветер разносит эти загрязнения на сотни километров от места их выброса: возникают туманы и смоги.
Оксиды азота окисляются в воздухе и тоже растворяются в капельках воды, образуя азотную кислоту.
Эти две кислоты (Н2SO4 и НNО3), а также их соли и обусловливают выпадение кислотных дождей. На растения, почву и воду выпадают также сухие частицы в виде солей.
Естественная дождевая вода имеет слабокислую реакцию (рН=6), так как находится в контакте с СО2 (естественный компонент атмосферы) и растворяет ее, образуя слабую угольную кислоту:
СО2 + Н2О = Н2СО3
Спектр влияния кислотных дождей очень широк. Прежде всего, они сказываются на популяциях рыб в озерах, особенно высокогорных, где вода стала кислой. По данным 1975 г., в США 51 % озер имели рН воды меньше 5, в 90 % этих озер рыба полностью отсутствовала. Правда, трудно предположить, что такая вода может сильно влиять на взрослых рыб. Скорее всего, низкий рН препятствует размножению рыб, убивая икру.
Кислотные дожди разрушают строительные материалы (растворы, гипс, камень и др.), реагируя с кальцием и магнием, входящими в их состав; усиливают коррозию строительных конструкций из железа и других металлов. Шведские специалисты обнаружили высокую корреляцию между кислотными дождями и коррозией ста ли. Бесценные мраморные статуи, исторические здания и витражи во всем мире подвергаются пагубному воздействию кислотных осадков.
В заключение следует подчеркнуть, что все страны на международном уровне должны, наконец, договориться о снижении выбросов диоксида углерода СО2 и других парниковых газов; сокращении выбросов оксидов серы и оксидов азота; запрещении использования хлорфторуглеводородов.
Загрязнение воды.
Несмотря на то, что вода является возобновляемым ресурсом, она может быть загрязнена до такой степени, что становится непригодной для многих видов водопользования и вредной для живых организмов. Кроме того, антропогенная деятельность приводит к деградации и разрушению водных экосистем.
Загрязнение воды связано с использованием наземных экосистем и загрязнением атмосферы. Это экологическая проблема не только локального, регионального, но и глобального уровня. Речные и океанические течения переносят загрязнения далеко от мест их сброса, часто пересекая государственные границы.
Загрязнение пресноводных экосистем происходит из точечных и неточечных источников. Точечные источники сбрасывают загрязнения по трубам, канавам и канализационным системам со сточными водами. Примерами служат промышленные предприятия, очистные станции, угольные шахты, нефтяные скважины. Неточечные источники – это поверхностный сток и грунтовые воды, собирающие загрязняющие вещества с обширных водосборных бассейнов: пашен, откормочных хозяйств, районов лесозаготовок, строительных площадок, автостоянок, дорог и городов. Другим неточечным источником является воздушный бассейн, откуда загрязняющие вещества попадают в реки, озера, водохранилища, в основном с осадками: кислотными и радиоактивными дождями и др.
В реках, особенно с быстрым течением, концентрация относительно небольшого количества загрязнений может снижаться, а запасы растворенного в воде кислорода восстанавливаться благодаря способности водоемов к самоочищению. Самоочищение – комплекс естественных механических, физико-химических и биохимических процессов, приводящих к восстановлению первоначальных свойств воды: разбавление, смещение, осаждение, коагуляция, биохимическое окисление и др. Это происходит в случае, если нагрузка загрязняющих веществ не превышает экологическую аккумулирующую емкость (экологический резерв) водотока. Однако некоторые вещества очень плохо или вообще поддаются биохимическим процессам разложения и концентрируются в живых организмах, поступая по пищевым цепям: радиоизотопы, соединения ртути и др.
В озерах и водохранилищах процессы самоочищения протекают менее эффективно, чем в реках, так как в них часто наблюдается вертикальная термическая стратификация, мешающая перемешиванию верхних и нижних слоев воды. Кроме того, озера и водохранилища накапливают большие объемы донных отложений, содержащих биогенные и токсичные вещества. Очистка и замена воды в них занимает от года до ста лет. Таким образом, озера представляют собой природные западни, подверженные большой опасности загрязнения. В России загрязнение грозит даже уникальному озеру Байкал – крупнейшему и самому глубокому в мире водоему с пресной водой.
Загрязнение океана нефтью – другая серьезная экологическая проблема глобального масштаба. Чаще всего обращают на себя внимание аварии танкеров и выбросы нефти под большим давлением из буровых скважин на дне океана. Однако более половины (по некоторым оценкам, до 90 %) нефти попадает океан с суши в результате стока нефтяных отходов городов промышленных предприятий. Воздействие нефти на морские экосистемы зависит от многих факторов: типа нефти (сырая или очищенная), размеров загрязнения и удаленности от берега, времени года, погодных условий, температуры воды, приливоотливных течений и т. д. Нефть – это смесь сотен веществ различными свойствами.
Удаление питательных веществ, накопленных в отложениях, эффективно только при ликвидации всех отложений в случае содержания в них больших запасов фосфора.
Для устранения цветения и зарастания применяют обработку водоемов сульфатом меди, выкашивание прибрежной растительности и ее механическое удаление. Эти мероприятия могут привести к уменьшению запасов биогенных веществ в водоеме, только если отмершие водоросли и укосы высшей водной растительности будут извлечены и увезены за пределы водосбора.
Заслуживают внимания воздействия на процессы обмена веществами между донными отложениями и водой. Известно, что обмен между грунтом и водой регулируется окислительно-восстановительными условиями по обе стороны зоны контакта. Для ликвидации бескислородной области, обогащенной продуктами анаэробного распада и биогенными веществами, успешно может применяться принудительная аэрация.
Биологические способы борьбы с цветением водоемов находятся в стадии разработки. Наиболее перспективной мерой борьбы с интенсивным развитием фитопланктона и прибрежной растительности является разведение в водоемах растительноядных рыб. В России проведены опыты по акклиматизации белого амура и толстолобика в пресноводных водоемах. Для аккумуляции биогенов можно использовать и прибрежные заросли макрофитов с последующим их удалением.
Таким образом, используя те или иные способы воздействия на водоемы, можно снизить первичную продукцию до оптимального уровня и при необходимости ускорить деструкционные процессы. Если прекращается чрезмерный сброс в водоемы питательных биогенных веществ, они обычно возвращаются в первоначальное состояние.
8.4.Сопоставление предельно допустимых концентраций загрязняющих веществ и фактических концентраций этих компонентов.
Объемы предельно допустимых выбросов (ПДВ) и сбросов (ПДС) вредных веществ и микроорганизмов, загрязняющих воздух, воды, почвы, и других предельно допустимых нагрузок (ПДН) рассчитывают с учетом производственных мощностей объекта и данных о вредных последствиях по каждому источнику загрязнения. Цель расчетов – обеспечение наиболее благоприятных условий жизни населения, предотвращение разрушения и необратимых изменений естественных экологических систем (ст. 33 Закона ООПС). Ясно, что без создания экологических нормативов эта статья останется лишь декларацией. Согласно действующим правилам основной принцип, заложенный в расчеты ПДВ, ПДС и ПДН, - это обеспечение таких объемов поступления загрязнений в окружающую среду, при которых не нарушаются требования природопользователей (ПДК). Следовательно, в основе всех расчетов лежат действующие ПДК.
Расчеты ПДС в водоемы. Согласно действующим Правилам санитарногигиенические требования к Качеству воды относятся только к местам или Створам Водопользования, а не ко всей акватории водного объекта. В водотоках контрольный створ, в котором состав и свойства воды должны соответствовать нормативным, расположен на расстоянии 1 км выше ближайшего по течению пункта Водопользования.
Для водоемов рыбохозяйственного назначения контрольный створ устанавливается на расстоянии 0,5 км от выпуска сточных вод. В непроточных водоемах контрольная зона должна соответствовать нормативам в радиусе 1 км от пункта водопользования.
Требования к составу и свойствам воды в контрольных створах и зонах зависят от вида водопользования. Основной принцип определения условий сброса сточных вод в водоемы заключается в том, что на первом этапе проектирования, т. е. при выборе площадки для нового объекта или реконструкции существующего, должны быть представлены материалы, характеризующие:
1) объект, его производительность; количество, состав, свойства и степень изученности сточных вод; место предполагаемого выпуска; наличие методов очистки, обезвреживания утилизации, возможности оборотного и повторного использования сточных вод; наличие ПДК загрязняющих веществ;
2) санитарное состояние водного объекта; его гидрологический режим; наличие выпусков других объектов; перспективу использования водного объекта, возможность изменения гидрологического режима, появление на нем новых водопользователей и др.
ПДС устанавливаются для каждого вещества с учетом фоновой концентрации, категории водопользования, норм качества воды и ассимилирующей способности водного объекта.
Чем меньше рассчитанная степень необходимого разбавления соответствует местным условиям, тем более жесткими должны быть мероприятия по очистке сточных вод. Технические и экономические трудности на пути осуществления этих мероприятий могут указать, но необходимость переноса проектируемого строительства в район с более благоприятными гидрологическими условиями.
Сточные воды запрещается сбрасывать в водные объекты также в следующих случаях: 1) при возможности повторного использования; 2) при содержании ценных отходов, которые могут быть утилизированы; З) при содержании вредных веществ, для которых не установлены ПДК; 4) при возможности их использования для орошения.
При большом количестве выпусков и сбрасываемых загрязняющих веществ расчеты условий их сброса могут приводить к абсурдным результатам, когда допустимые концентрации сбрасываемых веществ становятся неизмеримо малы. Так, допустимые концентрации некоторых веществ в промышленных сточных водах Санкт-Петербурга значительно меньше, чем допустимое содержание их в питьевой воде, т. е. сброс даже городской водопроводной воды должен быть запрещен, не говоря уже о сточных водах. Это свидетельствует о том, что методология, заложенная в действующих нормативных документах, пригодна только для простых случаев сброса сточных вод через небольшое число выпусков и требует пересмотра.
Как видим, при расчетах ПДС и ПДВ учитываются в основном интересы людей. Между тем, при воздействии вредных веществ на природные экосистемы «вторичные» эффекты, не имеющие первостепенного значения для человека, приобретают решающее значение. Определяющей может оказаться не первоначальная концентрация вещества, а его накопление в различных звеньях экосистемы. Экологическая безопасность может быть обеспечена, если в приведенных выше расчетах условий отведения сточных вод использовать не ПДК, а экологически допустимые концентрации (ЭДК) для определения экологически допустимых сбросов (ЭДС).
Сравнение допустимых концентраций некоторых загрязнений в промышленных сточных водах Санкт-Петербурга (1991 г.) с требованиями ГОСТа на питьевую воду (1996 г.) и ПДК для водоемов хозяйственно питьевого назначения.
Нормативное обеспечение экологической безопасности природной среды как ресурса жизнеобеспечения населения, т. е. создание дополнительно к действующим нормативов, защищающих интересы природных систем надорганизменного уровня, - одна из ключевых проблем охраны природы.
Разумеется, экологические подходы необходимо развивать и при нормировании качества других природных сред и биосферы в целом.
8.5.Экологическая политика ЗАО «Крымский ТИТАН».
Экологическая политика ЗАО «Крымский ТИТАН» и стратегические цели определяются отделом охраны окружающей среды, с привлечением структурных подразделений, научно-исследовательских и проектных институтов, утверждаются Председателем правления ЗАО «Крымский ТИТАН», и периодически пересматривается с учетом результатов проверок, аудитов и анализа, доводятся до сведения всех сотрудников предприятия и общественности.
Политика ЗАО «Крымский ТИТАН» тесно увязана с международными стандартами в области охраны окружающей среды и заключается в достижении следующих целей:
– рациональное использование природных ресурсов;
–достижение уровня экологической безопасности и рационального использования природных ресурсов соответствующего современному состоянию развития науки, техники и ЗАО;
–повышение экологической безопасности производственных объектов ЗАО, снижение негативного воздействия на окружающую среду за счет повышения надежности, обеспечение безопасной и безаварийной работы технологического оборудования;
–сокращение количества выбросов, сбросов загрязняющих веществ и отходов за счет внедрения новых прогрессивных технологий, оборудования, материалов и повышения уровня автоматизации менеджмента технологическими процессами;
–выявление основных источников образования отходов и оптимизация деятельности ЗАО по уменьшению объемов их образования;
–создание и реализация эффективной системы производственного экологического контроля по соблюдению требований охраны окружающей среды, рационального использования природных ресурсов и экологического мониторинга на объектах ЗАО.
Для достижения поставленных целей ЗАО «Крымский ТИТАН» принимает на себя обязательства:
–обеспечить соблюдение требований национального, регионального и местного законодательства, международных соглашений, отраслевых нормативных документов, регламентирующих деятельность химических предприятий в области охраны окружающей среды и рационального использования природных ресурсов;
–принимать комплекс мер по исключению возможности возникновения аварийных ситуаций с учетом понимания того, что любая намечаемая или осуществляемая производственно-хозяйственная деятельность ЗАО представляет собой потенциальную опасность;
–внедрять передовые научные разработки и технологии с целью сокращения удельного потребления природных ресурсов, материалов и энергии;
–обеспечить оценку экологических рисков и их страхование, разработку, реализацию и контроль мер предупредительного снижения рисков;
–поддерживать приоритетность системного менеджмента охраны окружающей среды, стремится к последовательному внедрению в ЗАО международных стандартов в области менеджмента окружающей среды серии ISO 14000;
–пересматривать, корректировать и совершенствовать, по мере необходимости, политику ЗАО в области охраны окружающей среды и рационального использования природных ресурсов.
0 комментариев