Министерство образования и науки Российской Федерации
Серовский металлургический техникум
КУРСОВОЙ ПРОЕКТ
по дисциплине Детали машин
на тему
Расчет одноступенчатого цилиндрического редуктора в приводе к мешалке
Выполнил:
Студент 3 МиТЕПО
Городилов А.Ю.
2005
Содержание
Введение
1. Кинематическая схема агрегата и его принцип действия
2. Расчетная часть
2.1 Выбор двигателя и кинематический расчет привода
2.2 Выбор материала зубчатых колес. Определение допустимого напряжения
2.3 Расчет зубчатой передачи редуктора
2.4 Расчет открытой передачи
2.5 Нагрузки валов редуктора
2.6 Разработка чертежей общего вида редуктора
2.7 Расчётная схема валов редуктора
2.8 Проверочный расчёт подшипников
2.9 Выбор муфт
2.10 Смазывание смазывающего устройства
2.11 Проверочный расчет шпонок
2.12 Проверочный расчёт стяжных винтов
2.13 Проверочный расчет валов
2.14 Расчет технического уровня редуктора
Список используемой литературы
Введение
Создание машин, отвечающих потребностям народного хозяйства, должно предусматривать их наибольший экономический эффект и высокие тактико-технические и эксплуатационные показатели.
Основные требования, предъявляемые к создаваемой машине: высокая производительность, надёжность, технологичность, ремонтопригодность, минимальные габариты и масса, удобство эксплуатации, экономичность, техническая эстетика. Все эти требования учитывают в процессе проектирования и конструирования. Проектирование – это разработка общей конструкции изделия. Конструирование – это детальная дальнейшая разработка всех вопросов, связанных с воплощением принципиальной схемы в реальную конструкцию. Проект – это техническая документация, полученная в результате проектирования и конструирования.
Курсовой проект по деталям машин является первой конструкторской работой студента, выполненной на основе знаний общеобразовательных, общетехнических и общеспециальных дисциплин. Здесь есть все: и анализ назначения и условий работы проектируемых деталей; и наиболее рациональные конструктивные решения с учетом технологических, монтажных эксплутационных и экономических требований. А также кинематические расчеты и определение сил, действующих на детали и узлы; и расчеты конструкций на прочность; и выбор материалов; и процесс сборки и разборки конструкций; и многое другое.
Таким образом, достигаются основные цели данного проекта:
-Овладеть техникой разработки конструкторских документов на различных стадиях проектирования;
-Получить навыки самостоятельного решения инженерно-технических задач и умения анализировать полученные результаты;
-Научиться работать со стандартными, различной инженерной, учебной и справочной литературой (каталогами, атласами, Классификатором ЕСКД).
В результате приобретенные навыки и опыт проектирования машин и механизмов общего назначения станут базой для выполнения курсовых проектов по специальным дисциплинам и дипломного проекта
1. Кинематическая схема агрегата и его принцип действия
Цель:
1. изучить и вычертить схему машинного агрегата
2. проанализировать назначение и конструкцию элементов приводного устройства, выбрать место установки машинного агрегата
3. определить ресурс приводного устройства
1. Двигатель 5. Упругая муфта с торообразной оболочкой
2. Ограждение 6. Мешалка
3. Клиноремённая передача 7. Смесь
4. Цилиндрический редуктор 8. Задвижка
I, II, III, IV – валы, соответственно, - двигателя, быстроходного вала редуктора, тихоходного вала редуктора, рабочей машины.
Тема моего курсового проекта “Расчет одноступенчатого цилиндрического редуктора в приводе к мешалке”. Этот агрегат состоит из двигателя, упругой муфты, закрытой цилиндрической передачи (1 шестерня,1 колесо), клиноременной передачи, а также валов. Начиная работать, двигатель передает крутящий момент на ведущий шкив клиноременной передачи. С ведущего шкива, с помощью клинового ремня, крутящий момент передаётся на ведомый шкив. С ведомого шкива крутящий момент передаётся на быстроходный вал одноступенчатого цилиндрического редуктора. Тихоходный вал, с помощью муфты с торообразной обмоткой, передаёт крутящий момент на рабочую машину (мешалку).
Срок службы приводного устройства
Срок службы (ресурс) Lh ,ч, определить по формуле:
Lh =365 Lr tc Lc , (1)
где Lr – срок службы привода, лет,
Lc – число смен,
tc - продолжительность смены, ч.
Lh =365*6*8*2=35 040 ч
Из полученного значения Lh следует, вычисть примерно 15% часов на профилактику, текущий ремонт, нерабочие дни (время простоя).
(Lh)=Lh - 15%=35 040*0.85=29 784 ч
Принимаем Lh=30 000 ч
Таблица 1. Условия эксплуатации машины.
Место установки | Lr | Lc | tc | Lh | Характеристика нагрузки | Режим работы |
Завод железобетонных изделий | 6 л. | 2 см. | 8 ч. | 29 784 ч. | С легкими толчками | Реверсивный |
2 Расчетная часть
2.1 Выбор двигателя и кинематический расчет привода
Цель:
1. определить номинальную мощность и номинальную частоту вращения
2. определить передаточное число привода и его ступеней
3. рассчитать силовые и кинематические параметры привода
Определяем номинальную мощность и номинальную частоту вращения двигателя
Определим требуемую мощность рабочей машины Ррм, кВт:
Ррм=0, 32ω, (2)
где ω -угловая скорость, рад/с.
ω=n / 30 = 3, 14*65 / 30 = 6, 8
Ррм=0,32*6, 8=2, 2 кВт
Определим общий коэффициент полезного действия привода:
h=hзпhопhмhпк2hпс, (3)
где hзп - коэффициенты полезного действия закрытой передачи, hзп=0.97 %
hоп - коэффициенты полезного действия открытой передачи, hоп=0.97 %
hпк - коэффициенты полезного действия муфты, hпк=0.9952 %
hм - коэффициенты полезного действия подшипников качения, hм=0.98 %
hпс - коэффициенты полезного действия подшипников скольжения, hпс=0.99 %
h=0.97*0,97*0,98*0,9952*0,99=0,90
Определим требуемую мощность двигателя Рдв, кВт:
Рдв= Ррм/h, (4)
Рдв=2, 2/0, 90=2, 4 кВт
Рдв= 3 кВт
Выбираем тип двигателя:
Таблица 2. Характеристика двигателя
Вариант | Тип двигателя | Номинальная мощность Рном, кВт: | Частота вращения, об/мин | |
синхронная | При номинальном режиме nном | |||
1 2 3 4 | 4АМ112МВ8У3 4AM112МА6У3 4АМ100S4У3 4АМ90L2У3 | 3,0 3,0 3,0 3,0 | 750 1000 1500 3000 | 700 955 1435 2840 |
Определим передаточное число привода для всех приемлемых вариантов типа двигателя при заданной номинальной мощности Рном:
u1= n ном / nрм=700/65=10,7 (5)
u2= n ном 2 / nрм= 955/65=14, 7
u3= n ном 3 / nрм= 1435/65=22, 1
u4= n ном 4 / nрм= 2840/65=43, 7
Производим разбивку передаточного числа привода.
Первый способ.
uоп1=u1/ uзп=10, 7/4, 5=2,4(5)
u оп2= u2/ uзп =14,7/4,5 = 3,3
u оп3= u3/ uзп = 22,1/4, 5=4, 9
u оп4= u4/ uзп =43, 7/4, 5=9, 7
u= nном / nрм
Второй способ.
К2= = =1, 3 (6)
К3= ==1, 5
u зп1=4, 5
u зп2= u зп1*К2=4, 5*1, 3=5, 85
По таблице выбираем u зп2=5 и определяем u оп2= u2/ uзп2 =14,7/5=2, 94
u зп3= u зп2* К3=5*1, 5=7, 5
По таблице выбираем u зп3=7, 1 и определяем u оп3= u3/ uзп3=27, 6/6, 3=4, 38
Первый и четвёртый вариант типов двигателя брать нежелательно. Третий тип двигателя так же не подходит, т.к. u оп2=4, 9, а u зп2=4, 5, а вот второй вариант больше подходит, где u оп=3, 3. Его можно уменьшить до оптимального значения.
Определяем максимально допустимое отклонение частоты вращения приводного вала.
nрм= nрм* /100=65*7/100= 4, 55 об/мин (7)
Определяем допускаемую частоту вращения приводного вала.
[nрм]= nрм + nрм= 65+4, 55= 69, 55 об/мин (8)
Uф = nном / [nрм] = 955/69, 55 = 13, 7
Передаточное число открытой передачи.
Uоп = Uф / Uзп = 13, 7 / 4, 5 = 3 (9)
Таким образом, выбираем двигатель 4AM112МА6У3 (Рном = 3 кВт, nном = 955 об/мин). Передаточное число привода U = 15, редуктора Uзп = 4, 5, клиноремённой передачи Uоп =3.
Таблица 3
Тип двигателя 4AM112МА6У3 Рном = 3 кВт, nном = 955 об/мин. |
параметр | передача | параметр | вал | |||||
Закрытая. редуктор | открытая | двигателя | редуктора | привода рабочей машины | ||||
быстроход | тихоход | |||||||
Передаточное число U | 4, 5 | 3 | Расч.мощность на валу, Р кВт | 3 | 2, 88 | 2, 76 | 2, 67 | |
Угл.скорость, ω, 1/с | 100 | 33 | 7, 4 | 7, 4 | ||||
КПД h | 0, 97 | 0,97 | Частота вращения, n об/мин | 955 | 318 | 70, 4 | 70, 4 | |
Вращающий момент, Т Н/м | 30 | 86, 43 | 373, 5 | 362, 37 | ||||
Последовательность элементов по схеме:
ДВ – ОП – ЗП – М – РМ
ωном. дв= nном / 30 = 3, 14*955 /30 = 100 с-1 (10)
ωб = ωном. дв / Uоп = 100 / 3 = 33 с-1
ωтих = ωб / Uзп = 33 / 4,5 = 7, 4 с-1
nб = nном / Uоп = 955 / 3 = 318 об/мин (11)
nт = nб / Uзп = 318 / 4, 5 = 70, 7 об /мин
nрм = nт = 70, 7 об /мин
Рб= Рдвhопhпк (12)
Рб= 3*0, 97*0, 995 = 2, 88 кВт
Рт= Рбhзпhпк (13)
Рт = 2, 88*0,97*0, 9952=2, 76 кВт
Ррм= Рт hм hпс=2, 76*0, 98*0, 93=2, 67 кВт (14)
Тдв= Рдв*103/wном (15)
Тдв= 3*103 / 100= 0, 03 кН/м = 30 Н/мТб= Тдв uоп hпк hоп (16)
Тб= 30*3*0, 97*0, 9952 = 86, 43 Н/мТт= Тб uзп hзп hпк (17)
Тт= 86, 43*4, 5*0, 97*0, 9952 = 373,5 Н/мТрм= Тт hм hпс (18)
Трм=373 , 5*0, 98*0, 99 = 362, 37 Н/м
2.2 Выбор материала зубчатой передачи. Определение допустимых напряжений.
Цель:
1. выбрать твёрдость, термообработку
2. определить контактные допускаемые напряжения
3. определить допускаемые напряжения на изгиб
a. Выберем материал, одинаковый для шестерни и колёс, но с разными твёрдостями – 40ХН
b. Выберем термообработку – улучшение
c. Выберем твёрдость зубьев: для колеса – НВ2 = 270; для шестерни – НВ1 = 500
d. Определим механические характеристики сталей: -1 = 420 Н/мм2; в = 920 Н/мм2
e. Выберем предельные значения размеров заготовки шестерни (Dпред – диаметр) и колеса (Sпред – толщина обода или диска): Dпред= 200 мм, Sпред=125 мм
Определим коэффициент долговечности для колёс KHL1 и KHL2
KHL1 = 1 (19)
KHL2 = 2 ,
где NHO – число циклов перемены напряжений соответствующее пределу выносливости, NHO = 25 млн. циклов
N – число циклов перемены напряжения за весь срок службы,
N1 = 573 ωб *Lh= 573*33*90*103 = 567*106
N2 = 573 ωб *Lh= 127? 2*1
KHL1 = KHL2 = 1, т.к. по решению N NHO, то KHL принимаем равной 1.
Определим допускаемые контактные напряжения [s]но1 и [s]но2 , Н/мм²
[s]но= 1, 8 НВср + 67 = 1, 8*285+67 = 580 Н/мм2 (20)
Определим допускаемые напряжения изгиба для шестерни и колеса
[s]Fo = 1, 03* НВср = 1, 03*285 = 293, 9 Н/мм2 (21)
Определим допускаемое контактное напряжение для зубьев колёс, [s]н
[s]н1 = KHL1[s]но = 580 Н/мм2 (22)
[s]н = 0, 45*580 = 261 Н/мм2
Определим допускаемое напряжение на изгиб, [s]F
KFL1 = 1 KFL2 = 2 , (23)
где Nfo = 4*106 – число циклов перемены напряжений для всех сталей, соответствующее пределу выносливости.
N1 = 567*106; N2 = 127? 2*106. Если N Nfo, то KFL = 1
[s]F1 = KFL1 * [s]Fo1 = 293,9 Н/мм2 (24)
Таблица 4
Элемент передачи | Марка стали | Dпред мм | Tepooб работка | НВ1ср | sв | s-1 | [s]н | [s]F |
Sпред мм | НВ2ср | H/мм² | ||||||
Шестерня | 40ХН | 200.0 125 | Улучшение | 285 | 920 | 420 | 261 | 294 |
Колесо | 40ХН | 200.0 125 |
... , составляющих корпус аппарата, при нагружении его газовым и гидростатическим давлениями, приведены на рис. 1.2. Рис. 1.2. Расчетные схемы элементов корпуса, нагруженного внутренним давлением: а - крышка аппарата; б - обечайка аппарата; в - днище аппарата. 1.1.3.1 Определение толщины стенки обечайки Толщину стенки цилиндрической обечайки аппарата в соответствии с рис. 1.3 определяем по ...
... для охлаждения до 6 °С. Продолжительность хранения продукта при 6 °С составляет не более 4 сут с момента окончания технологического процесса. Рис. 1. Схема технологичекой линии производства йогурта резервуарным способом:1- емкость для сырого молока; 2 - насосы; 3 - балансировочный бачок: 4-пластинчатая пастеризационно-охладительная установка; 5 - пульт управления; 6 – оборотный клапан; 7 ...
... между рядами ящиков укладывают тонкие деревянные рейки. После отвердевания масла (обычно на следующий день) ящики укладывают штабелями высотой до восьми ящиков. 1.2 ОСОБЕННОСТИ ПРОИЗВОДСТВА СЛИВОЧНОГО МАСЛА СБИВАНИЕМ СЛИВОК Сбиванием сливок вырабатывают сладкосливочное, кислосливочное, вологодское, крестьянское масло. Сладкосливочное масло. Изготавливают из свежих пастеризованных сливок в ...
... работник, и автоматизированные, где контроль за безопасной работой и режимом тепловой обработки обеспечивает сам тепловой аппарат при помощи приборов автоматики. На предприятиях общественного питания тепловое оборудование может использоваться как несекционное или секционное, модулированное. Несекционное оборудование, это оборудование, которое различно по габаритам, конструктивному исполнению и ...
0 комментариев