Проверяем рабочие контактные напряжения по формуле

59155
знаков
3
таблицы
3
изображения

1. Проверяем рабочие контактные напряжения по формуле

σН = ZН · ZМ · ZЕ·  < σНР , (26)

где ZН – коэффициент, учитывающий форму сопряженных поверхностей зубьев (ZН = 1,76 по [3, табл. 3]);

ZМ – коэффициент, учитывающий механические свойства материалов сопряженных зубчатых колес (ZМ = 274 · 103 Па1/2 по [3, табл. П22]);

ZЕ – коэффициент, учитывающий суммарную длину контактных линий;

КН – коэффициент нагрузки;

Ft– окружная сила, Н;

u – передаточное число;

d – делительный диаметр шестерни, мм;

b – ширина венца зубчатого колеса, мм;

σНР – допускаемое контактное напряжение, МПа (σНР = 420МПа).

Согласно [3, стр.96] коэффициент ZЕ, учитывающий суммарную длину контактных линий, определяется по формуле

ZЕ = , (27)

где Еα – коэффициент торцового перекрытия, определяется по формуле

Еα = [1,88 – 3,2∙ (1/ z1 + 1/ z2)] ∙ cosβ, (28)

где z1 – число зубьев шестерни;

z2 – число зубьев зубчатого колеса.

Подставляем числовые значения в формулу (28) и определяем коэффициент торцового перекрытия

Еα = [1,88 – 3,2∙ (1/ 46 +1/ 74)] ∙ cos0 = 1,77.

Подставляем значение коэффициента торцового перекрытия в формулу (27)

ZЕ = = 0,86

Коэффициент нагрузки определяем по формуле

KH = KHβ· KHυ, (29)

где KHβ – коэффициент, учитывающий неравномерность распределения нагрузки по ширине венца (K = 1,02 по [3, табл. П25]);

K – коэффициент, учитывающий динамическую нагрузку, возникающую в зацеплении (K = 1,13 по [3, табл. П26]).

Подставляем коэффициенты K, K в формулу (29) и находим коэффициент нагрузки

KH = 1,02 · 1,13 = 1,15.

По формуле (26) проверяем контактную выносливость зубьев:

σН = 1,76·274·103·0, 86·= 393·106 Па < σНР = 420Мпа.

2. Проводим проверочный расчет зубьев на их выносливость при изгибе. Согласно рекомендациям [3, с. 307], выносливость зубьев по напряжениям изгиба

проверим по уравнению

σF = < σ (30)

где YF – коэффициент формы зубьев;

KF – коэффициент нагрузки;

Ft– окружная сила, Н;

b – ширина венца зубчатого колеса, мм;

mn – нормальный модуль, мм;

σFP – допускаемое напряжение при расчете на выносливость зубьев при изгибе, Мпа.

FP =110 Мпа).

Коэффициент нагрузки определяем по формуле

KF = KFβ· K (31)

где KFβ – коэффициент, учитывающий неравномерность распределения нагрузки по ширине венца (KFβ = 1,04 по [3, табл. П25]);

K – коэффициент, учитывающий динамическую нагрузку, возникающую в зацеплении; для прямозубых колес (K = 1,26 по [3, табл.П26];

Следовательно, подставляем коэффициенты K, K в формулу (31) и находим коэффициент нагрузки

KF = 1,04 · 1,26= 1,31.

Согласно рекомендациям [3, с. 110], вычисляем эквивалентные числа зубьев шестерни и колеса по формуле

zυ= z/cos3β, (32)

где z – число зубьев шестерни (z1) или колеса (z2);

β – угол наклона линии зуба.

Тогда по формуле (34) получаем

zυ= 46/cos3(0) = 46;

z′′υ= 74/ cos3(0) = 74.

Согласно рекомендациям [3, табл. П27], интерполируя, определяем коэффициент формы зуба шестерни YF = 3,52 при zυ = 46 и колеса Y′′F = 3,72

при z′′υ= 74.

Сравнительная оценка прочности зуба шестерни и колеса при изгибе:

σFP/YF = 130/3,52 = 36,9 МПа,

σ′′FP/ Y′′F = 110/3,72 = 29,56 МПа.

Прочность зубьев колеса оказалась ниже, чем зубьев шестерни, поэтому проверку на выносливость по напряжениям изгиба следует выполнить для зубьев колеса.

По формуле (30) проверяем выносливость зубьев при изгибе:

σF =  = 108 МПа < σFP = 110 МПа.

2.6 Ориентировочный расчет валов

 

Диаметр выходного конца вала определим грубо приближенно (ориентировочный расчет) из расчета на прочность при кручении по заниженным допускаемым касательным напряжениям: [τК] = 20…40 МПа. Согласно рекомендациям [3, с. 307], принимаем [τК]' = 25 МПа для стали 45 (при df1 = 65,25мм целесообразно изготовить быстроходный вал вместе с шестерней) и [τК]'' = 20 МПа для стали 35, которую назначаем для изготовления тихоходного вала.


Информация о работе «Расчёт на прочность закрытой цилиндрической одноступенчатой передачи и её проектирование»
Раздел: Промышленность, производство
Количество знаков с пробелами: 59155
Количество таблиц: 3
Количество изображений: 3

Похожие работы

Скачать
45166
14
5

... напряжения σэкв = 1, 3 Fр / А (109) σэкв = 1, 3 *1780, 08 / 84, 2 = 27, 48 Н/мм2 [σ] 27, 48  75 Проверить прочность стяжных винтов подшипниковых узлов быстроходного вала цилиндрического редуктора. Rу – большая из реакций в вертикальной плоскости в опорах подшипников быстроходного вала, Rу = 2256, 08 Н. Диаметр винта d2 = 12 мм, шаг резьбы Р = 1, 75 мм. Класс прочности 5.6 ...

Скачать
42214
6
8

... с синхронной частотой вращения 750 об/мин. 2. Кинематический и энергетический расчёт привода 2.1 Кинематический расчёт Требуемое передаточное число привода при принятом электродвигателе: Разобьём передаточное число привода между редуктором и ремённой передачей. Примем: передаточное число ремённой передачи ирп = 3,55, тогда передаточное число редуктора: Частота вращения ...

Скачать
17267
2
12

Определяем действительное передаточное число привода u0 по формуле 3.8[1]  (7) Рассчитываем действительное передаточное число открытой цилиндрической передачи u89  (8) Нагрузочные характеристики каждого из валов привода (мощность Pj, частота вращения nj, крутящий момент Tj) приведены в таблице 1.1, заполненной на основании таблицы 1.2.6.[2]. Таблица 1.1 – Силовые и ...

Скачать
20220
7
5

... 1.6 Задаёмся передаточным отношением открытой передачи u = 2¸ 3 1.7 Определяем передаточное отношение редуктора Передаточное отношение редуктора должно входить в промежуток для конической прямозубой передачи U=2¸ 3 , где U - передаточное отношение двигателя Uоп - передаточное отношение открытой передачи ...

0 комментариев


Наверх