2.5 Сердечник полюса и полюсный наконечник
Марка стали 2013 У8А, толщина листов 0,5 мм, листы без изоляции, коэффициент заполнения кс=0,97
Длина шихтованного сердечника полюса (11.19)
ℓп=ℓ1+(10..15)=160+10=170 мм.
Суммарная длина пакетов с широкими полюсными наконечниками
Количество пакетов сердечника полюса соответственно с широкими, узкими и крайними полюсными наконечниками
Магнитная индукция в основании сердечника полюса (§ 11.3)
В'п=1,45 Тл.
Предварительное значение магнитного потока (9.14)
Ф'=В'бD1ℓ'110-6/р=0,77∙286∙160∙10-6/2=17,6∙10-3 Вб.
Ширина дуги полюсного наконечника (11.25)
bн.п=ατ=,0.77∙224,5=173 мм
Ширина полюсного наконечника (11.28)
b'н.п=2Rн.пsin(0.5bн.п/Rн.п)= 2∙142∙sin(0,5∙173/142)=162,49 мм.
Высота полюсного наконечника (§ 11.3)
h'н.п=3 мм.
Высота полюсного наконечника по оси полюса для машин с эксцентричным зазором (11.29)
Поправочный коэффициент (11.24)
кσ=1,25hн.п+25=1,25*28+25=60
Предварительное значение коэффициента магнитного рассеяния полюсов (11.22)
σ'=1+кσ35б/τ2=1+60∙35*1/224,5=1,04
Ширина сердечника полюса (11.21)
bп=σ'Ф'∙106/(ксℓпВ'п)=1,04∙17,6∙10-3∙106/(0,97∙170∙1,45)=78 мм.
Высота выступа у основания сердечника (11.32)
h'п=0.5D1-( hн.п+ б +hB+0.5bп)=0,5*286-(28+1+12+0,5*78)=63 мм.
Предварительный внутренний диаметр сердечника ротора (11.33)
D'2=dв=кв мм.
Высота спинки ротора (11.34)
hс2=0,5D1-б-h'п-0,5D'2=0,5∙286-1-63-28-0,5∙72=13 мм.
Расчетная высота спинки ротора с учетом прохождения части магнитного потока по валу (11.35)
h'с2=hс2+0,5D'2=13+0,5∙72=49 мм.
Магнитная индукция в спинке ротора (11.36)
Вс2= Тл.
3. Обмотка статора
Принимаем двухслойную петлевую обмотку из провода ПЭТ-155, класс нагревостойкости F, укладываемую в трапецеидальные полузакрытые пазы.
Коэффициент распределения (9.9)
кр1=;
где α=60/q1.
Укорочение шага (§ 9.3)
β'1=0,8
Шаг обмотки (9.11)
уп1=β1z1/(2p)=0,8∙42/(2∙2)=8,4;
Принимаем уп1=8.
Укорочение шага обмотки статора по пазам (11.37)
β1=2руп1/z1=2∙3∙8/42=0,762.
Коэффициент укорочения (9.12)
ку1=sin(β1∙90˚)=sin(0,762∙90)=0,93.
Обмоточный коэффициент (9.13)
коб1=кр1∙ку1=0,961∙0,93=0,91.
Предварительное количество витков в обмотке фазы (9.15)
w'1=.
Количество параллельных ветвей обмотки статора (§ 9.3)
а1=1
Предварительное количество эффективных проводников в пазу (9.16)
N'п1=;
Принимаем N'п1=10.
Уточненное количество витков (9.17)
.
Количество эффективных проводников в пазу (§ 11.4)
Nд=2
Количество параллельных ветвей фазы дополнительной обмотки
ад=2.
Количество витков дополнительной обмотки статора (11.38)
.
Уточненное значение магнитного потока (9.18)
Ф=Ф'(w'1/w1)= 17,6∙10-3 (69,7/70)= 17,5∙10-3 Вб.
Уточненное значение индукции в воздушном зазоре (9.19)
Вб=В'б(w'1/w1)=0,77∙(69,7/70)=0,767Тл.
Предварительное значение номинального фазного тока (9.20)
А.
Уточненная линейная нагрузка статора (9.21)
.
Среднее значение магнитной индукции в спинке статора (9.13)
Вс1=1,6 Тл.
Обмотка статора с трапецеидальными полуоткрытыми пазами (таблица 9.16)
В'з1max=1,9∙0,95=1,8 Тл.
Зубцовое деление по внутреннему диаметру статора (9.22)
t1=πD1/z1=3.14∙286/42=21,4 мм.
Предельная ширина зубца в наиболее узком месте (9.47)
b'з1min= мм.
Предварительная ширина полуоткрытого паза в штампе (9.48)
b'п1=t1min-b'з1min=23.37-10.56=12.8 мм.
Высота спинки статора (9.24)
hc1= мм.
Высота паза (9.25)
hn1=(Dн1-D1)/2-hc1=(406-286)/2-35=25 мм.
Высота шлица (§ 9.4)
hш=0,5 мм.
Большая ширина паза
.
Меньшая ширина паза
Проверка правильности определения ширины паза
Площадь поперечного сечения паза в штампе
Площадь поперечного сечения паза в свету
Площадь поперечного сечения корпусной изоляции
Площадь поперечного сечения прокладок между верхними нижними катушками в пазу
Площадь поперечного сечения паза
Площадь поперечного сечения паза для размещения основной обмотки
Количество элементарных проводов в эффективном (§ 9.4)
с=6
Размеры провода (приложение 1)
d / d’=1,4/1.485;
S=1,539 мм2.
Коэффициент заполнения паза
Среднее зубцовое деление статора (9.40)
tср1=π(D1+hп1)/z1=3,14(286+25)/42=23,3
Средняя ширина катушки обмотки статора (9.41)
bср1=tср1уп1=23,3∙8=186,4.
Средняя длина одной лобовой части обмотки (9.60)
ℓл1=(1,16+0,14*р)bср1+15=(1,16+0,14*2)*186,4+15=284 мм.
Средняя длина витка обмотки (9.43)
ℓср1=2(ℓ1+ℓл1)=2(284+160)=890 мм.
Длина вылета лобовой части обмотки (9.63)
ℓв1=(0,12+0,15р)bср1+10=(0,12+0,15*2)186,4+10=88 мм.
Плотность тока в обмотке статора (9.39)
J1=I1/(S∙c∙a1)=54.1/(6*1,5539)=5,86 А/мм2.
Определяем значение А1J1 (§11.4)
А1J1=253∙5,86=1483 А2/см∙мм2.
Допустимое значение А1J1 (рисунок 11.12)
(А1J1)доп=2150 > 1483 А2/см∙мм2.
4. Расчет магнитной цепи
4.1 Воздушный зазор
Расчетная площадь поперечного сечения воздушного зазора (11.60)
Sб=α'τ(ℓ'1+2б)=0,66∙224,5(160+2∙1)=24000 мм2.
Уточненное значение магнитной индукции в воздушном зазоре (11.61)
Вб=Ф∙106/Sб=17,5∙103/24000=0,73Тл.
Коэффициент, учитывающий увеличение магнитного зазора, вследствие зубчатого строения статора
кб1=.
МДС для воздушного зазора (9.121)
Fб=0,8бкбВб∙103=0,8∙1∙1,16∙0,73∙103=679. А.
... , напряжений и выбрать подходящую элементную базу для его реализации. Рассчитать потери на полупроводниковых компонентах. – Оценить массо – габаритные показатели и стоимость комплектующих ЭП. синхронный генератор когтеобразный ротор ВВЕДЕНИЕ Современный автомобиль невозможно представить себе без электрооборудования. Все потребители нуждаются в стабильном источнике постоянного тока, ...
... одной демпферной обмоткой аналогичной по оси q. 6. При исследовании электромагнитных переходных процессов не учитывают изменение вращения скорости генератора. Математическая модель синхронного генератора в фазных координатах При составлении этой модели, в целях упрощения, не будем учитывать демпферные обмотки. Следовательно, уравнение баланса напряжений имеет вид: Уравнение статора: ...
... цепь возбуждения и двигатель механизма изменения частоты вращения турбины. Включение генераторов на параллельную работу способом самосинхронизации заключается в том, что невозбуждённый генератор разворачивают примерно до синхронной частоты вращения и включают вручную полуавтоматически или автоматически в сеть. Затем в обмотку ротора генератора подают возбуждение и генератор входит в синхронизм. ...
... особенностью машины постоянного тока является наличие коллектора и скользящего контакта между обмоткой якоря и внешней электрической цепью. 2.2 Устройство машины постоянного тока Машина постоянного тока (рис. 2.3) по конструктивному исполнению подобна обращенной синхронной машине, у которой обмотка якоря расположена на роторе, а обмотка возбуждения – на статоре. Основное отличие заключается ...
0 комментариев