4.8 Общие параметры магнитной цепи

Суммарная МДС магнитной цепи (11.111)

FΣ(1)= Fбзс+Fпс=748+142=890 А.

Коэффициент насыщения (11.112)

кнас=FΣ/(Fб+Fп2)=890/(679+104)=1,14


Рисунок 1 - Характеристики холостого хода


5. Активное и индуктивное сопротивление обмотки статора для установившегося режима

Активное сопротивление обмотки фазы (9.178)

r1= Ом.

Активное сопротивление в относительных единицах (9.179)

r1*=r1I1/U1=0,118∙54,1∙/400=0,0276 о.е.

Проверка правильности определения r1* (9.180)

r1*= о.е.

Коэффициенты, учитывающие укорочение шага (9.181, 9.182)

кβ1=0,4+0,6b1=0,4+0,6∙0,762=0,86;

к'β1=0,2+0,8b1=0,2+0,8∙0,762=0,81.

Коэффициент проводимости рассеяния (9.187)

λп1=

Коэффициент проводимости дифференциального рассеяния (11.118)


λд1=.

Коэффициент проводимости рассеяния лобовых частей обмотки (9.191)

λл1=0,34.

Коэффициент зубцовой зоны статора (11.120)

квб=.

Коэффициент, учитывающий влияние открытия пазов статора на магнитную проницаемость рассеяния между коронками зубцов (§ 11.7)

кк=0,02

Коэффициент проводимости рассеяния между коронками зубцов (11.119)

.

Суммарный коэффициент магнитной проводимости потока рассеяния обмотки статора (11.121)

λ1п1л1д1к=1,154+1,092+1,3+0,2=3,8.

Индуктивное сопротивление обмотки статора (9.193)

хσ=1,58f11w21λ1/(pq1∙108)=1.58∙50∙160∙702∙3,38/(2∙3,5∙108)=0,336 Ом.


Индуктивное сопротивление обмотки фазы статора (9.194)

хs*1I1/U1=0,1336∙54,1∙/400=0,0787 о.е.

Проверка правильности определения х1*(9.195)

хs*= о.е.


6. Расчет магнитной цепи при нагрузке

Строим частичные характеристики намагничивания

Ф=f(Fбзс), Фσ=f(Fбзс), Фп=f(Fп2) (о.е.).

Строим векторные диаграммы Блонделя по следующим исходным данным: U1=1; I1=1; cosj=0,8;

ЭДС, индуктированная магнитным потоком воздушного зазора

Eб=1,06 о.е.

МДС для воздушного зазора

Fб=0,8 о.е.

МДС для магнитной цепи воздушного зазора и статора

Fбзс=0,9 о.е.

Предварительный коэффициент насыщения магнитной цепи статора

к'нас=Fбзс/Fб=0,9/0,8=1,13

Поправочные коэффициенты, учитывающие насыщение магнитной цепи

хd=0,95;

хq=0,67;

кqd=0,0036.

Коэффициенты реакции якоря

каd=0,85;

каq=0,32.

Коэффициент формы поля реакции якоря

кфа=1,05.

Амплитуда МДС обмотки статора (11.125)

Fa=0.45m1w1коб1I1кфа/р=0,45∙3∙70∙0,89∙54,1*1,05/2=2388 А.

Амплитуда МДС обмотки статора в относительных единицах (11.127)

Fа*= о.е.

Поперечная составляющая МДС реакции якоря, с учетом насыщения, отнесенная к обмотке возбуждения (11.128)

Faq/cosy=хqkaqFa*=0.67∙0.32∙2,68=0,57 о.е.


ЭДС обмотки статора, обусловленная действием МДС

Eaq/cosy=0.73о.е.

Направление вектора ЭДС Ебd, определяемое построением вектора Еaq/cosψ

y=61Å;

cosy=0.48;

siny=0.87

Продольная МДС реакции якоря с учетом влияния поперечного поля (11.130)

F'ad=xdkadFa*siny+kqdFa*cosy·t/δ=0.95*0,85∙0.87*2,68+0,0036*2,68*0,48*224,5*0,66/1=2,56

Продольная составляющая ЭДС

Eбd*бd=0,99 о.е.

МДС по продольной оси

Fбd*=0,82о.е.

Результирующая МДС по продольной оси (11.131)

Fба*=Fбd*+F'ad*=0,82+2,56=3,38о.е.

Магнитный поток рассеяния

Фs*=0,23о.е.

Результирующий магнитный поток (11.132)


Фп*бd*s*=0,99+0,23=1,22 о.е.

МДС, необходимая для создания магнитного потока

Fп.с=0,42 о.е.

МДС обмотки возбуждения при нагрузке (11.133)

Fп.и*=Fба*+Fпс*=33,8+0,42=3,8 о.е.

МДС обмотки возбуждения при нагрузке (11.134)

Fп.н=Fпн*·FS(1)=3,8∙890=3382 А.



Информация о работе «Синхронный генератор»
Раздел: Промышленность, производство
Количество знаков с пробелами: 34798
Количество таблиц: 1
Количество изображений: 5

Похожие работы

Скачать
15490
0
8

... , напряжений и выбрать подходящую элементную базу для его реализации. Рассчитать потери на полупроводниковых компонентах. – Оценить массо – габаритные показатели и стоимость комплектующих ЭП. синхронный генератор когтеобразный ротор ВВЕДЕНИЕ   Современный автомобиль невозможно представить себе без электрооборудования. Все потребители нуждаются в стабильном источнике постоянного тока, ...

Скачать
7061
0
20

... одной демпферной обмоткой аналогичной по оси q. 6.  При исследовании электромагнитных переходных процессов не учитывают изменение вращения скорости генератора. Математическая модель синхронного генератора в фазных координатах При составлении этой модели, в целях упрощения, не будем учитывать демпферные обмотки. Следовательно, уравнение баланса напряжений имеет вид: Уравнение статора: ...

Скачать
44061
12
12

... цепь возбуждения и двигатель механизма изменения частоты вращения турбины. Включение генераторов на параллельную работу способом самосинхронизации заключается в том, что невозбуждённый генератор разворачивают примерно до синхронной частоты вращения и включают вручную полуавтоматически или автоматически в сеть. Затем в обмотку ротора генератора подают возбуждение и генератор входит в синхронизм. ...

Скачать
342209
3
154

... особенностью машины постоянного тока является наличие коллектора и скользящего контакта между обмоткой якоря и внешней электрической цепью. 2.2 Устройство машины постоянного тока Машина постоянного тока (рис. 2.3) по конструктивному исполнению подобна обращенной синхронной машине, у которой обмотка якоря расположена на роторе, а обмотка возбуждения – на статоре. Основное отличие заключается ...

0 комментариев


Наверх