4.2 Зубцы статора

Расчетная площадь поперечного сечения зубцов статора (11.64)

Sз1(1/3)= мм2.

Магнитная индукция в зубце статора (11.65)


Вз1(1/3)=Ф∙106/Sз1(1/3)=17,5∙10-3*106/10,11∙103=1,74 Тл.

Напряженность магнитного поля (приложение 9)

Нз1=12,9А/см.

Средняя длина пути магнитного потока (9.124)

Lз1=hп1=25 мм.

МДС для зубцов (9.125)

Fз1=0,1Нз1Lз1=0.1∙12,9∙325=32 А.

4.3 Спинка статора

Расчетная площадь поперечного сечения спинки статора (11.66)

Sc1=hc1c1kc=35∙160∙0.97=5430 мм2.

Расчетная магнитная индукция (11.67)

Вс1=Ф∙106/2(Sc1)= 17,5∙10-3*106/(2∙5430)=1,61 Тл.

Напряженность магнитного поля (приложение (12)

Нс1=7,88 А/см.

Средняя длина пути магнитного потока (9.166)

Lс1=π(Dн1-hс1)/4р=3,14(406-35)/(4∙2)=146 мм.

МДС для спинки статора (11.68)


Fс1=0,1∙Нс1Lс1=0,1∙7,88∙146=37А.

4.5 Полюсы

Величина выступа полюсного наконечника (11.72)

b''п=0,5(b'н.п – bп)=0,5(162-78)=42 мм.

Высота широких полюсных наконечников (11.83)

Расстояние между боковыми поверхностями смежных полюсных наконечников (11.84)

aн.п=-bн.п-3.14*hш/p=224,5-173-9,57=42 мм.

Коэффициент магнитной проводимости потока рассеяния (11.85)

.

Длина пути магнитного потока (11.87)

Lп=h'п+0,7hн.п=63+0,7*28=82,6 мм.

Расстояние между боковыми поверхностями узких пакетов смежных полюсных наконечников


.

Коэффициент магнитной проводимости потока рассеяния в зоне узких пакетов полюсных наконечников

λу=0,5nYУhYУ=0.5*4*8*23,6/109,8=3,44

Коэффициент магнитной проводимости потока рассеяния в зоне крайних пакетов полюсных наконечников

λкр = 2*lкр *hY/aY=2*9*23,4/107,8=3,9

Суммарный коэффициент магнитной проводимости потока рассеяния полюсных наконечников

λн.п.=λшУкр=50+3,4+3,9=57,3

МДС для статора и воздушного зазора (11.91)

Fбзс=Fб+Fз1+Fс1=679+32+37=748 А.

Магнитный поток рассеяния полюсов (11.92)

Фσ=4λпн.пFбзс∙10-11=4∙150∙170∙748∙10-11=0,763∙10-3 Вб.

Коэффициент рассеяния магнитного потока (11.93)

σ=1+Фσ/Ф=1+0,763∙10-3 /17,55∙10-3 =1,043


Расчетная площадь поперечного сечения сердечника полюса (11.94)

Sпспbп=0,97∙170∙78=13,2*103 мм2.

Магнитный поток в сердечнике полюса (11.95)

Фп=Ф+Фσ=(17,55+0,763) 10-3 =18,31∙10-3 Вб.

Магнитная индукция в сердечнике полюса (11.96)

Впп/(Sп∙10-6)= 18,31∙10-3/(13,2*103∙10-6)=1,42 Вб.

Напряженность магнитного поля в сердечнике полюса (приложение 21)

Нп=3,5 А/см.

МДС для полюса (11.104)

Fп=0,1∙Lп∙Нп=0,1∙84,6*3,5=30 А.

4.6 Спинка ротора

Расчетная площадь поперечного сечения спинки ротора (11.105)

Sс2=ℓ2h'с2кс=170∙49∙0,97=8080 мм2.

Среднее значение индукции в спинке ротора (11.106)

Вc2=σФ∙106/(2Sс2)=1,043∙17,5∙10-3∙106/(2∙8080)=1,13Тл.

Напряженность магнитного поля в спинке ротора (приложение 21)

Нc2=1,28 А/см.

Средняя длина пути магнитного потока в спинке ротора (11.107)

Lс2=[π(D2+2hc2)/(4p)]+0,5h'с2=3,14(72+2∙13)/(4∙2)+0,5∙49=63 мм.

МДС для спинки ротора (9.170)

Fc2=0.1∙Lc2∙Hc2=0.1∙63∙1,28=8 А.

4.7 Воздушный зазор в стыке полюса

Зазор в стыке (11.108)

бп2=2ℓп∙10-4+0,1=2∙170∙10-4+0,1=0,13 мм.

МДС для зазора в стыке между сердечником полюса и полюсным наконечником (

Fп2=0,8бп2Вп∙103=0,8∙0,13∙1,42∙103=104 А.

Суммарная МДС для полюса и спинки ротора (11.170)

Fпс=Fп+Fс2+Fп2+Fзс=30+8+104=142А.


Информация о работе «Синхронный генератор»
Раздел: Промышленность, производство
Количество знаков с пробелами: 34798
Количество таблиц: 1
Количество изображений: 5

Похожие работы

Скачать
15490
0
8

... , напряжений и выбрать подходящую элементную базу для его реализации. Рассчитать потери на полупроводниковых компонентах. – Оценить массо – габаритные показатели и стоимость комплектующих ЭП. синхронный генератор когтеобразный ротор ВВЕДЕНИЕ   Современный автомобиль невозможно представить себе без электрооборудования. Все потребители нуждаются в стабильном источнике постоянного тока, ...

Скачать
7061
0
20

... одной демпферной обмоткой аналогичной по оси q. 6.  При исследовании электромагнитных переходных процессов не учитывают изменение вращения скорости генератора. Математическая модель синхронного генератора в фазных координатах При составлении этой модели, в целях упрощения, не будем учитывать демпферные обмотки. Следовательно, уравнение баланса напряжений имеет вид: Уравнение статора: ...

Скачать
44061
12
12

... цепь возбуждения и двигатель механизма изменения частоты вращения турбины. Включение генераторов на параллельную работу способом самосинхронизации заключается в том, что невозбуждённый генератор разворачивают примерно до синхронной частоты вращения и включают вручную полуавтоматически или автоматически в сеть. Затем в обмотку ротора генератора подают возбуждение и генератор входит в синхронизм. ...

Скачать
342209
3
154

... особенностью машины постоянного тока является наличие коллектора и скользящего контакта между обмоткой якоря и внешней электрической цепью. 2.2 Устройство машины постоянного тока Машина постоянного тока (рис. 2.3) по конструктивному исполнению подобна обращенной синхронной машине, у которой обмотка якоря расположена на роторе, а обмотка возбуждения – на статоре. Основное отличие заключается ...

0 комментариев


Наверх