11.3 Вентиляционный расчет

Необходимый расход воздуха (5.28)

Vв=м3/с.

Z1=600

Наружный диаметр вентилятора

мм

Внутренний диаметр колеса вентилятора

мм

Длина лопатки вентилятора

мм

Количество лопаток вентилятора

Линейные скорости вентилятора по наружному и внутреннему диаметрам соответственно:

м/с

 м/с

Напор вентилятора

 Па

Площадь поперечного сечения входных отверстий вентилятора

 мм2

Максимальный расход воздуха

 м3

Действительный расход воздуха

 м3

Действительный напор вентилятора


 Па


12. Масса и динамический момент инерции

12.1 Масса

Масса стали сердечника статора (11.255)

mс1Σ=mз1+mс1=11,9+50=61,9 кг.

Масса стали полюсов (11.256)

mсп=7,8∙10-6ксlп(bпh'пкbнпhнп)2р=7,8∙10-6∙0,97∙170 (78∙65+0,7∙162∙28)∙4 = 42,4 кг.

Масса стали сердечника ротора (11.257)

mс2=6,12кс10-6l1[(2,05hс2+D2)2-D2]=6,12∙0,97∙10-6∙170[(2,05∙13+72)-722]=4,6 кг.

Суммарная масса активной стали статора и ротора (11.258)

mсΣ=mсзΣ+mсп+mс2=61,9+42,4+4,6=108,9

Масса меди обмотки статора (11.259)

mм1=8,9∙10-6m1(a1w1lср1S0+adwdlсрдSэфд)=8,9∙10-6∙3(63∙1∙70*890*9,234 + 2∙7∙9,234∙890) = 18,4кг.

Суммарная масса меди (11.261)

mмΣ= mм1+mн.п=18,4+27,7=46кг.


Суммарная масса изоляции (11.262)

mи=(3,8D1.5н1+0,2Dн1l1)10-4=(3,8∙4061,5+0,2∙406∙160)∙10-4=4,4кг.

Масса конструкционных материалов (11.264)

mк=АDн1+В=1,25∙406-300=207,5 кг.

Масса машины (11.265)

mмаш=mсΣ+mмΣ+mи+mк=109,9+46+4,4+207,5=367 кг.

12.2 Динамический момент инерции ротора

Радиус инерции полюсов с катушками (11.266)

Rп.ср=0,5[(0,5D21+(0.85-0.96)(0.5D2+hc2)2]∙10-6=0.5[(0.5∙2862 + 0.96(0.5∙72 +13)2]∙10-60,0115 м.

Динамический момент инерции полюсов с катушками (11.267)

Jп=(mсп+mмп+mмd)4R2п.ср=(42,4+24,6)4∙0,01152=0,77 кг/м2.

Динамический момент инерции сердечника ротора (11.268)

Jс2=0,5mс2∙10-6[(0,5D2+hс2)2-(0,5D2)2]=0,5∙4,6∙10-6[(0,5∙72+13)2-0,5∙72]=0,01 кг/м2.

Масса вала (11.269)

mв=15∙10-6l1D22=15∙10-6∙160*722=12,5кг.

Динамический момент инерции вала (11.270)

Jв=0,5mв(0,5D2)210-6=0.5∙12,5(0.5∙72)2∙10-6=0,01 кг/м2.

Суммарный динамический момент инерции ротора (11.271)

Jи.д=Jn+Jc2+Jв=0,077+0,01+0,01=0,79 кг/м2.


13. Механический расчет вала

Расчет вала на жесткость

Данные для расчета:

Dн2=284 мм, l2=170 мм, δ=1 мм

d1 = 70 мм; d2 = 75 мм; d3 = 87 мм; d4 = 75 мм; у1 = 70 мм; у2 = 120 мм; х1 = 34 мм;

х2 = 98 мм; а = 254 мм; b = 232 мм; c = 94 мм; l = 514 мм; t = 7,5 мм.

Сила тяжести (3-3)

Н

Прогиб вала на середине сердечника от силы тяжести по (3-5)

Номинальный момент вращения (3-1б)

Н·м

Поперечная сила (3-7)

Н

Прогиб вала от поперечной силы (3-8)


Расчетный эксцентриситет сердечника ротора (3-9)

мм

Сила одностороннего магнитного притяжения (3-10)

Н

Дополнительный прогиб от силы тяжести (3-11)

мм

Установившийся прогиб вала (3-12)

мм

Результирующей прогиб вала (3-13)

мм

Сила тяжести упругой муфты (§ 3-3)


Н

Прогиб от силы тяжести упругой муфты (3-14)

мм

Определение критической частоты вращения

Первая критическая частота вращения

об/мин

nкр должно превышать максимальную рабочую частоту на 30%, донное условие выполняется.

Расчет вала на прочность

Изгибающий момент (3-17)

Н·м

Момент кручения (3-19)

Н

Момент сопротивления при изгибе (3-20)

мм 3


Приведенное напряжение (3-21)

Па

Значение σпр ни при одном сечении вала не должно превышать σТ=245 ·10 6 Па, данное условие выполняется.


Литература

1. Гольдберг О.Д., Гурин Я.С., Свириденко И.С. Проектирование электрических машин: Учебник для вузов. – М.: Высшая школа, 2001.- 430 с.

2. Копылов И.П. Проектирование электрических машин: Учебник для вузов. – 3-е изд., испр. и доп. – М.: Высшая школа, 2002. –757 с.: ил.


Информация о работе «Синхронный генератор»
Раздел: Промышленность, производство
Количество знаков с пробелами: 34798
Количество таблиц: 1
Количество изображений: 5

Похожие работы

Скачать
15490
0
8

... , напряжений и выбрать подходящую элементную базу для его реализации. Рассчитать потери на полупроводниковых компонентах. – Оценить массо – габаритные показатели и стоимость комплектующих ЭП. синхронный генератор когтеобразный ротор ВВЕДЕНИЕ   Современный автомобиль невозможно представить себе без электрооборудования. Все потребители нуждаются в стабильном источнике постоянного тока, ...

Скачать
7061
0
20

... одной демпферной обмоткой аналогичной по оси q. 6.  При исследовании электромагнитных переходных процессов не учитывают изменение вращения скорости генератора. Математическая модель синхронного генератора в фазных координатах При составлении этой модели, в целях упрощения, не будем учитывать демпферные обмотки. Следовательно, уравнение баланса напряжений имеет вид: Уравнение статора: ...

Скачать
44061
12
12

... цепь возбуждения и двигатель механизма изменения частоты вращения турбины. Включение генераторов на параллельную работу способом самосинхронизации заключается в том, что невозбуждённый генератор разворачивают примерно до синхронной частоты вращения и включают вручную полуавтоматически или автоматически в сеть. Затем в обмотку ротора генератора подают возбуждение и генератор входит в синхронизм. ...

Скачать
342209
3
154

... особенностью машины постоянного тока является наличие коллектора и скользящего контакта между обмоткой якоря и внешней электрической цепью. 2.2 Устройство машины постоянного тока Машина постоянного тока (рис. 2.3) по конструктивному исполнению подобна обращенной синхронной машине, у которой обмотка якоря расположена на роторе, а обмотка возбуждения – на статоре. Основное отличие заключается ...

0 комментариев


Наверх