12. Проверочный расчет на контактную выносливость при действии максимальной нагрузки
Действительное напряжение sHmax определяют по формуле:
≤sHPmax
где КAS = 3 – коэффициент внешней динамической нагрузки при расчетах на прочность от максимальной нагрузки;
КA = 1 – коэффициент, учитывающий внешнюю динамическую нагрузку, (определен ранее);
Тмах / TH = Кпер = 1,45(исходные данные).
Таким образом:
МПа.
Допускаемое контактное напряжение при максимальной нагрузке, не вызывающее остаточных деформаций или хрупкого разрушения поверхностного слоя sHPmax, зависит от способа химико-термической обработки зубчатого колеса и от характера изменения твердости по глубине зуба. Для зубьев, подвергнутых улучшению, принимают:
sHPmax1,2= 2,8sТ
тогда sHPmax1= 28·690 =1932 МПа, sHPmax2= 28·540 =1512 МПа.
Проверка условия прочности:
sHmax≤ sHPmax1 → 812,258 МПа ≤ 1932 МПа – условие выполнено;
sHmax≤ sHPmax2 → 812,258 МПа ≤ 1512 МПа – условие выполнено.
13. Расчет зубьев на выносливость при изгибе
13.1 Определение расчетного изгибного напряжения
Расчетом определяют напряжение в опасном сечении на переходной поверхности зуба для каждого зубчатого колеса.
Выносливость зубьев, необходимая для предотвращения усталостного излома зубьев, устанавливают сопоставлением расчетного местного напряжения от изгиба в опасном сечении на переходной поверхности и допускаемого напряжения:
sF £ sFP.
Расчетное местное напряжение при изгибе определяют по формуле, МПа:
sF = ×KF×YFS×Yβ×Yε
где FtF =1990,538– окружная сила на делительном цилиндре, Н;
bω = 50– рабочая ширина венца зубчатой передачи, мм;
m = 2,5– нормальный модуль, мм;
YFS– коэффициент, учитывающий форму зуба и концентрацию напряжений определяется по формуле:
,
где x1 = x2 = 0 – коэффициенты смещения;
zu1 = z1 / cos3β = 29/13 = 29 – эквивалентное число зубьев шестерни,
zu2 = z2 / cos3β = 71/13 = 71 – эквивалентное число зубьев колеса.
Тогда:
,
,
Yβ = 1(т.к. β = 0)– коэффициент, учитывающий наклон зуба;Yε =1(т.к. передача прямозубая) – коэффициент, учитывающий перекрытие зубьев;
KF– коэффициент нагрузки принимают по формуле:
KF = KA×KFu×KFb×KFa, где KA = 1– коэффициент, учитывающий внешнюю динамическую нагрузку (не учтенную в циклограмме нагружения); KFu= 1,225– коэффициент, учитывающий динамическую нагрузку, возникающую в зацеплении до зоны резонанса определяется по таблице. KFb = 1,07 – коэффициент, учитывающий неравномерность распределения нагрузки по длине контактных линий (по графику); KFa = 1(т.к. прямозубая передача)– коэффициент, учитывающий распределение нагрузки между зубьями;Таким образом:
KF = KA×KFu×KFb×KFa = 1×1,225×1,07×1 = 1,311.
Тогда:
sF1 = ×KF×YFS1×Yβ×Yε= ×1,311×3,925×1∙1 = 81,941 МПа,
sF2 = ×KF×YFS2×Yβ×Yε= ×1,311×3,656×1∙1 = 76,325 МПа.
13.2 Допускаемые напряжения в проверочном расчете на изгиб Допускаемым напряжением sFP определяются по формуле: sFP = ×YN×Yδ×YR×YX , где sFlimb – предел выносливости зубьев при изгибе, соответствующий базовому числу циклов напряжений, МПа определяется по формуле: sFlimb =s0Flimb×YT×Yz×Yg×Yd×YA , где s0Flimb – предел выносливости при отнулевом цикле изгиба,для колес из стали марки 40Х, подвергшейся улучшению s0Flimb = 1,75ННВ МПа.
s0Flimb1 = 1,75*265 = 463,75 МПа. s0Flimb2 = 1,75*250=437,5 МПа.
YT принимают YT1 = YT2 = 1, поскольку в технологии изготовления шестерни и колеса нет отступлений от примечаний к соответствующим табл. – коэффициент, учитывающий технологию изготовления; Yz – коэффициент, учитывающий способ получения заготовки зубчатого колеса для поковки Yz1 = 1 и Yz2 = 1; Yg– коэффициент, учитывающий влияние шлифования передней поверхности зуба Yg1 = Yg2 = 1, так как шлифование не используется; Yd – коэффициент, учитывающий влияние деформационного упрочнения или электрохимической обработки переходной поверхности, Yd1 = Yd2 = 1, так как отсутствует деформационное упрочнение;YA = 1– коэффициент, учитывающий влияние двустороннего приложения нагрузки так как одностороннее приложение нагрузки.
Тогда:
sFlimb1 =s0Flimb1×YT×Yz×Yg×Yd×YA = 463,75×1×1×1×1×1 = 463,75 МПа;
sFlimb2 =s0Flimb2×YT×Yz×Yg×Yd×YA= 437,5×1×1×1×1×1 = 437,5 МПа.
SF = 1,7 – коэффициент запаса прочности определяется в зависимости от способа термической и химико-термической обработки;
YN – коэффициент долговечности находится по формуле:
но не менее 1,
где qF – показатель степени;
NFlim – базовое число циклов перемены напряжений, NFlim= 4×106 циклов;
NК – суммарное число циклов перемены напряжений, уже определены:
NK1 = 427,5∙106 циклов,
NK2 = 171∙106 циклов.
Так как NK1 > NFlim = 4×106 и NK2 > NFlim, то YN1 = YN2 =1.
Yδ – коэффициент, учитывающий градиент напряжения и чувствительность материала к концентрации напряжений находится в зависимости от значения модуля m по формуле:
Yδ = 1,082 – 0,172∙lgm = 1,082 – 0,172∙lg2,5 = 1,014
YR – коэффициент, учитывающий шероховатость переходной поверхности: при улучшении YR1,2 = 1,2.
YX – коэффициент, учитывающий размеры зубчатого колеса определяется по формуле:
YX1 = 1,05 – 0,000125∙d1 = 1,05 – 0,000125×72,5 = 1,041,
YX2 = 1,05 – 0,000125∙d2 = 1,05 – 0,000125×177,5 = 1,028
Таким образом:
МПа,
МПа.
Сопоставим расчетные и допускаемые напряжения на изгиб:
sF1 = 80,941 < sFP1 = 345,545,
sF2 =76,325 < sFP2 = 321,915.
Условие выполняется.
13.3 Расчет на прочность при изгибе максимальной нагрузкойПрочность зубьев, необходимая для предотвращения остаточных деформаций, хрупкого излома или образования первичных трещин в поверхностном слое, определяют сопоставлением расчетного (максимального местного) и допускаемого напряжений изгиба в опасном сечении при действии максимальной нагрузки:
sFmax £ sFPmax.
Расчетное местное напряжение sFmax, определяют по формуле:
,
где КAS = 3– коэффициент внешней динамической нагрузки при расчетах на прочность от максимальной нагрузки;
КA = 1 – коэффициент, учитывающий внешнюю динамическую нагрузку, (определен ранее);
Тмах / TF = Кпер = 1,45(исходные данные).
Таким образом:
МПа,
МПа.
Допускаемое напряжение sFPmax определяют раздельно для зубчатых колес (шестерни и колеса) по формуле:
,
где σFSt – предельное напряжение зубьев при изгибе максимальной нагрузкой, МПа; определяем по приближённой зависимости:
σFSt ≈ σFlimb×YNmax×KSt
где σFlimb – предел выносливости зубьев при изгибе, соответствующий базовому числу циклов напряжений, МПа;
σFlimb1 = 463,75 МПа σFlimb2 = 437,5 МПа
YNmax1,2 = 4 (т.к. qF = 6)– коэффициент, учитывающий влияние деформационного упрочнения.
KSt1,2 = 1,3 (т.к. qF = 6)– коэффициент, учитывающий различие между предельными напряжениями, определёнными при ударном, однократном нагружении и при числе ударных нагружений N = 103;
Тогда:
σFSt1 ≈ σFlim1×YNmax1×KSt1 = 463,75∙4∙1,3 = 2411,5 МПа,
σFSt2 ≈ σFlimb2×YNmax2×KSt2 = 437,5×4×1,3 = 2275 МПа.
SFSt = 1,75 – коэффициент запаса прочности;
YX – коэффициент учитывающий размер зубчатого колеса, определяется по формуле. YX1 = 1,041, YX2 = 1,028 (определены ранее).
коэффициент YRSt= 1 и отношение YdSt/YdStT = 1.
Получим:
Проверка условия прочности:
sFmax1 ≤ sFPmax1 → 352,093МПа ≤ 1434,498 МПа – условие выполнено;
sFmax2 ≤ sFPmax2 → 332,014 МПа ≤ 1336,4 МПа – условие выполнено.
Расчет цилиндрической передачи
Расчет косозубой быстроходной ступени.
Исходные данные:
Выбираем материалы для изготовления зубчатых колёс и способы из термообработки:
Выбираем в зависимости от выходной мощности
Так как
NВЫХ =кВт,
тогда материалы зубчатых колес – Сталь 40Х.
Термообработка:
шестерни – улучшение, твердость Н1 = Н2 (269…262)=265НВ;
колеса – улучшение, твердость Н2 = (235…262)=250НВ.
u = 2,5 – передаточное число.
n1 = 712,5об/мин – частота вращения шестерни,
n2 = 285об/мин – частота вращения колеса,
T1 = 29,6 Н∙м – вращающий момент на шестерне,
T2 = 72,157Н∙м – вращающий момент на колесе,
Коэффициент перегрузки при пуске двигателя Кпер = 1,45.
1. Выбираем коэффициент ширины зуба yba с учетом того, что имеем несимметричное расположение колес относительно опор: yba = 0,315
Тогда коэффициент ширины зуба по диаметру ybd определяем по формуле:
ybd = 0,5×yba×(u+1) = 0,5×0,315×(2,5+1) = 0,55.
2. Проектный расчет заключается в определении межосевого расстояния проектируемой передачи: , ак, как редуктор соосный, следовательно принимаем межосевое расстояние равное межосевому расстоянию тихоходной ступени (прямозубой передачи), тогда = 125 мм. 3. Рассчитываем значение модуля:m = (0,01…0,02)×aω = (0,01…0,02)×125 = 1,25…2,5 мм.
По ГОСТ 9563-80 принимаем стандартный нормальный модуль: m = 2,5 мм. 4. Задаёмся углом наклона b = 16° и определяем суммарное zC число зубьев шестерни z1 и колеса z2 : zC= (2×aω×сosb)/m = 2∙125∙сos(13°)/2,5 = 97,43, Полученное значение округляем до целого числа: zC = 97. Тогда: z1 = zC/(1+u) = 97/(2,5+1) = 27,714, z2 = zС – z1 = 97 – 28 = 69. где zmin = 17 для передач без смещения. 5. Уточняем передаточное число и его погрешность по формулам:,
что меньше допустимых максимальных 3%.
6. Уточняем значение угла b по формуле:
, тогда b = 14°04’12”
7. Основные размеры шестерни и колеса: 7.1 Делительные диаметры шестерни и колеса определяются по формуле, мм: 7.3 Диаметры вершин зубьев определяются по формуле с учетом того, что зубья изготовлены без смещения (х = 0), мм: da1 = d1 + 2×m= 72,165 + 2×2,5 = 77,165, da2 = d2 + 2×m = 177,835 + 2×2,5 = 182,835; 7.6 Диаметры впадин, мм: df1=d1 – 2,5×m = 72,165 – 2,5×2,5 = 66,915, df2=d2 – 2,5×m = 177,835– 2,5×2,5 = 171,585; 7.7 Основные диаметры, мм:db1 = d1∙cosat = 72,165×0,936 = 67,564,
db2 = d2∙cosat = 177,835×0,936 = 166,497,где делительный угол профиля в торцовом сечении:
°.
Проверим полученные диаметры по формуле: aω= (d1 + d2)/2 = (72,165+ 177,835)/2 = 125 мм, что совпадает с ранее найденным значением. 7.8 Ширина колеса определяется по формуле:b2 = yba×aω = 0,315∙125 = 39,375 мм.
Полученное значение ширины колеса округляем до нормального линейного размера: b2 = 39 мм. 7.6 Ширина шестерни определяется по формуле, мм:b1 = b2 + (5...10) = 39 + (5...10) = 44…49.
Полученное значение ширины округляем до нормального линейного размера: b1 = 46 мм. 10. Определим окружную скорость зубчатых колес по формуле:м/c.
По окружной скорости колес назначаем 9-ю степень точности зубчатых колес.
... с изоляцией: Отношение номинального диаметра неизолированного провода к диаметру изолированного провода: Коэффициент заполнения паза: Площадь поперечного сечения неизолированного провода: Плотность тока в обмотке: Удельная тепловая нагрузка якоря от потерь в обмотке: Допустимое значение удельной тепловой нагрузки якоря от потерь в обмотке: Среднее ...
... ; 20. ; 21. . Полученный в расчете коэффициент насыщения отличается от принятого приблизительно до 3%, что вполне допустимо. Таблица 3 - Пусковые характеристики асинхронного двигателя с короткозамкнутым ротором с учетом вытеснения тока и насыщения от полей рассеяния № п/п Расчетные формулы Размерность Скольжение s 1 0,8 0,5 0,2 0,1 0,22=sкр 1 ...
... . t, с U, °С 0 0 500 36,5 1000 54 1500 62,3 2000 66,4 2500 68,2 3000 69,2 3600 69,7 2. Проектирование передаточного устройства 2.1 Выбор и обоснование кинематической схемы Согласно технологической схеме рабочей машины, транспортер приводится в движение электродвигателем через цепную передачу. Цепная передача отличается простотой в монтаже и эксплуатации, исключает ...
... .335 с., ил. Организационно-экономический расчёт.Консультант: Одинцова Л. А. Исследовательская часть. Охрана труда и охрана окружающей среды. В данном проекте спроектирован цех для ремонта поршневых компрессоров. Основной материал обработки серый чугун марок СЧ 21, 24 ГОСТ 1412-79. Для ремонта компрессоров применяется различное оборудование: токарные, круглошлифовальные, плоскошлифовальные, ...
0 комментариев