12. Проверочный расчет на контактную выносливость при действии максимальной нагрузки
Действительное напряжение sHmax определяют по формуле:
где КAS = 3 – коэффициент внешней динамической нагрузки при расчетах на прочность от максимальной нагрузки;
КA = 1 – коэффициент, учитывающий внешнюю динамическую нагрузку, (определен ранее);
Тмах / TH = Кпер = 1,45(исходные данные).
Таким образом:
МПа.
Допускаемое контактное напряжение при максимальной нагрузке, не вызывающее остаточных деформаций или хрупкого разрушения поверхностного слоя sHPmax, зависит от способа химико-термической обработки зубчатого колеса и от характера изменения твердости по глубине зуба. Для зубьев, подвергнутых улучшению, принимают:
sHPmax1,2= 2,8sТ
тогда
sHPmax1= 2,8·690 =1932 МПа, sHPmax2= 2,8·540 =1512 МПа.
Проверка условия прочности:
sHmax≤ sHPmax1 → 553,312 МПа ≤ 1932 МПа – условие выполнено;
sHmax≤ sHPmax2 → 553,312 МПа ≤ 1512 МПа – условие выполнено.
13. Расчет зубьев на выносливость при изгибе
13.1. Определение расчетного изгибного напряжения
Расчетом определяют напряжение в опасном сечении на переходной поверхности зуба для каждого зубчатого колеса.
Выносливость зубьев, необходимая для предотвращения усталостного излома зубьев, устанавливают сопоставлением расчетного местного напряжения от изгиба в опасном сечении на переходной поверхности и допускаемого напряжения:
sF £ sFP.
Расчетное местное напряжение при изгибе определяют по формуле, МПа:
sF = ×KF×YFS×Yβ×Yε
где FtF = 820,342– окружная сила на делительном цилиндре, Н;
bω = 39– рабочая ширина венца зубчатой передачи, мм;
m = 2,5– нормальный модуль, мм;
YFS– коэффициент, учитывающий форму зуба и концентрацию напряжений определяется по формуле:
,
где x1 = x2 = 0 – коэффициенты смещения;
zu1 = z1 / cos3β = 28/0,973 = 30,679 – эквивалентное число зубьев шестерни,
zu2 = z2 / cos3β = 69/0,973 = 75,602 – эквивалентное число зубьев колеса.
Тогда:
,
,
Yβ – коэффициент, учитывающий наклон зуба определяется по формуле: ,Yε – коэффициент, учитывающий перекрытие зубьев;
где εβ– коэффициент осевого перекрытия (определен при расчете расчетного контактного напряжения), т.к. eb= 1,207 ³ 1,то
KF– коэффициент нагрузки принимают по формуле:
KF = KA×KFu×KFb×KFa, где KA = 1– коэффициент, учитывающий внешнюю динамическую нагрузку (не учтенную в циклограмме нагружения); KFu= 1,4– коэффициент, учитывающий динамическую нагрузку, возникающую в зацеплении до зоны резонанса определяется по таблице. KFb = 1,07 – коэффициент, учитывающий неравномерность распределения нагрузки по длине контактных линий (по графику); KFa – коэффициент, учитывающий распределение нагрузки между зубьями определяется в зависимости от значения εβ. так как εβ =1,245> 1, то KFa определяется по следующей формуле: ,где n – степень точности по нормам контакта (уже определена);
ea– коэффициент торцового перекрытия.
Таким образом:
KF = KA×KFu×KFb×KFa = 1×1,4×1,07×1 = 1,494.
Тогда:
sF1 = ×KF×YFS1×Yβ×Yε= ×1,494×3,9×0,858∙0,606 = 25,49 МПа,
sF2 = ×KF×YFS2×Yβ×Yε= ×1,494×3,645×0,0,858∙0,606 = 23,823 МПа.
13.2 Допускаемые напряжения в проверочном расчете на изгиб. Допускаемым напряжением sFP определяются по формуле: sFP = ×YN×Yδ×YR×YX , где sFlimb – предел выносливости зубьев при изгибе, соответствующий базовому числу циклов напряжений, МПа определяется по формуле: sFlimb =s0Flimb×YT×Yz×Yg×Yd×YA , где s0Flimb – предел выносливости при отнулевом цикле изгиба,для колес из стали марки 40Х, подверженных улучшению s0Flimb = 1,75ННВ МПа.
s0Flimb1 = 1,75*265 = 463,75МПа. s0Flimb2 = 1,75*250=437,5 МПа.
YT принимают YT1 = YT2 = 1, поскольку в технологии изготовления шестерни и колеса нет отступлений от примечаний к соответствующим табл. – коэффициент, учитывающий технологию изготовления; Yz – коэффициент, учитывающий способ получения заготовки зубчатого колеса для поковки Yz1 = 1 и Yz2 = 1; Yg– коэффициент, учитывающий влияние шлифования передней поверхности зуба Yg1 = Yg2 = 1, так как шлифование не используется; Yd – коэффициент, учитывающий влияние деформационного упрочнения или электрохимической обработки переходной поверхности, Yd1 = Yd2 = 1, так как отсутствует деформационное упрочнение;YA = 1– коэффициент, учитывающий влияние двустороннего приложения нагрузки так как одностороннее приложение нагрузки.
Тогда:
sFlimb1 =s0Flimb1×YT×Yz×Yg×Yd×YA = 463,75×1×1×1×1×1 = 463,75 МПа;
sFlimb2 =s0Flimb2×YT×Yz×Yg×Yd×YA= 437,5×1×1×1×1×1 = 437,5 МПа.
SF = 1,7 – коэффициент запаса прочности определяется в зависимости от способа термической и химико-термической обработки;
YN – коэффициент долговечности находится по формуле:
но не менее 1,
где qF – показатель степени;
NFlim – базовое число циклов перемены напряжений, NFlim= 4×106 циклов;
NК – суммарное число циклов перемены напряжений, уже определены:
NK1 = 1069∙106 циклов,
NK2 = 428∙106 циклов.
Так как
NK1 > NFlim = 4×106 и NK2 > NFlim, то YN1 = YN2 =1.
Yδ – коэффициент, учитывающий градиент напряжения и чувствительность материала к концентрации напряжений находится в зависимости от значения модуля m по формуле:
Yδ = 1,082 – 0,172∙lgm = 1,082 – 0,172∙lg2,5= 1,014.
YR – коэффициент, учитывающий шероховатость переходной поверхности: при улучшенииYR1,2 = 1,2.
YX – коэффициент, учитывающий размеры зубчатого колеса определяется по формуле:
YX1 = 1,05 – 0,000125∙d1 = 1,05 – 0,000125×72,165 = 1,041,
YX2 = 1,05 – 0,000125∙d2 = 1,05 – 0,000125×177,835 = 1,028.
Таким образом:
МПа,
МПа.
Сопоставим расчетные и допускаемые напряжения на изгиб:
sF1 = 25,49 < sFP1 = 345,545,
sF2 =23,823 < sFP2 = 321,915.
Условие выполняется.
13.3 Расчет на прочность при изгибе максимальной нагрузкойПрочность зубьев, необходимая для предотвращения остаточных деформаций, хрупкого излома или образования первичных трещин в поверхностном слое, определяют сопоставлением расчетного (максимального местного) и допускаемого напряжений изгиба в опасном сечении при действии максимальной нагрузки:
sFmax £ sFPmax.
Расчетное местное напряжение sFmax, определяют по формуле:
,
где КAS = 3 – коэффициент внешней динамической нагрузки при расчетах на прочность от максимальной нагрузки;
КA = 1 – коэффициент, учитывающий внешнюю динамическую нагрузку, (определен ранее);
Тмах / TF = Кпер = 1,45(исходные данные).
Таким образом:
МПа,
МПа.
Допускаемое напряжение sFPmax определяют раздельно для зубчатых колес (шестерни и колеса) по формуле:
,
где σFSt – предельное напряжение зубьев при изгибе максимальной нагрузкой, МПа; определяем по приближённой зависимости:
σFSt ≈ σFlimb×YNmax×KSt
где σFlimb – предел выносливости зубьев при изгибе, соответствующий базовому числу циклов напряжений, МПа;
σFlimb1 = 463,75 МПа σFlimb2 = 437,5 МПа
YNmax1,2 = 4 (т.к. qF = 6)– коэффициент, учитывающий влияние деформационного упрочнения.
KSt1,2 = 1.3 (т.к. qF = 6)– коэффициент, учитывающий различие между предельными напряжениями, определёнными при ударном, однократном нагружении и при числе ударных нагружений N = 103;
Тогда:
σFSt1 ≈ σFlim1×YNmax1×KSt1 = 463,75∙4∙1,3 = 2411,5МПа,
σFSt2 ≈ σFlimb2×YNmax2×KSt2 = 437,5×4×1,3 = 2275 МПа.
SFSt = 1,75 – коэффициент запаса прочности;
YX – коэффициент учитывающий размер зубчатого колеса, определяется по формуле. YX1 = 1,041, YX2 = 1,028 (определены ранее).
коэффициент YRSt= 1 и отношение YdSt/YdStT = 1.
Получим:
Проверка условия прочности:
sFmax1 ≤ sFPmax1 → 110,882 МПа ≤ 1434,498 МПа – условие выполнено;
sFmax2 ≤ sFPmax2 → 103,63 МПа ≤ 1336,4 МПа – условие выполнено.
Проектный расчет валов редуктора
Расчет выполняем на кручение по пониженным допускаемым напряжениям.
Крутящие моменты в поперечных сечениях валов:
ведущего Тк1=29,6.103 Н.мм;
промежуточного Тк2=72,157.103Н.мм;
выходного Тк3=175,901.103Н.мм;
Ведущий вал.
Диаметр выходного конца при допускаемом напряжении [τк] = 25МПа
Принимаем dв1=18мм.
Диаметр под подшипниками примем dп1=25мм; диаметр шейки для упора подшипника ddn1=25мм.
Промежуточный вал.
Определяем диаметр под колесо dк2 при допускаемом напряжении [τк] = 25МПа
Принимаем dк2=235мм; диаметр под подшипники dп2=30мм.
Выходной вал.
Определяем диаметр выходного конца вала dв3 при допускаемом напряжении [τк] = 15МПа
Примем dв3=40мм; диаметр под подшипники dп3=45мм; диаметр под цилиндрическое зубчатое колесо dк3=48мм; диаметр шейки для упора подшипника dδn3=51мм
Проверочный расчет тихоходного (выходного) вала
Рассчитаем нагрузки, возникающие в зубчатом зацеплении [3].
Окружное усилие:
.
Радиальное усилие:
Осевое усилие равно нулю, так как передача прямозубая.
Определим реакции в опорах.
; ,
; .
Из эпюры изгибающих моментов видно, что наиболее опасное сечение – в месте шпоночного паза для установки зубчатого колеса. Рассчитаем коэффициент запаса в этом сечении.
Условие прочности вала имеет вид,
где n – общий коэффициент запаса в рассматриваемом сечении вала;
[n] – допускаемый коэффициент запаса, [n] = 2,5;
Общий коэффициент запаса определяется по формуле (стр. 95 [2])
,
где ns – коэффициент запаса прочности по нормальным напряжениям;
nt –коэффициент запаса прочности по касательным напряжениям.
При длительном сроке службы вала по [2]
,
,
где sт,tт – средние значения цикла нормальных напряжений изгиба и кручения,по [2]:
tт=tv=,
где Мк – крутящий момент на валу;
Wкнетто – момент сопротивления кручению, по [2]:
,
где b – ширина шпоночного паза;
t1 – глубина шпоночного паза вала;
d – диаметр вала под колесом.
sv и tv – амплитуды циклов нормальных и касательных напряжений.
,
где Ми – изгибающий момент на валу;
Wкнетто – момент сопротивления изгибу, по [2]:
s-1 и t-1 – пределы выносливости материала вала при симметричном цикле изгиба и кручения, для углеродистой стали по [2]:
s-1 = 0,43sв =0,43*610=262,3Н/мм2, t-1 =0,58s-1 =0,58*262,3=152 Н/мм2;
sт=0, так как осевое усилие на колесе равно нулю;
ys и yt – коэффициенты, характеризующие чувствительность материала к асимметрии цикла изменения напряжений изгиба и кручения, для для углеродистых сталей, yt= 0,1;
b – коэффициент, учитывающий влияние шероховатости поверхности;
es, et – масштабные факторы для нормальных и касательных напряжений, по таб. [2] es=0,82, et =0,7;
ks, kt- эффективный коэффициенты концентрации нормальных и касательных напряжений по таб. [2] ks=1,6, kt=1,5;
После подстановки:
Коэффициент запаса прочности:
> [n]=2,5
Условие прочности выполнено.
Выбор подшипников
На ведущем валу по справочнику [1] выбираем шариковые радиальные однорядные подшипники средней серии диаметров ГОСТ 8338-75.
D=62мм; d=25мм; В=17мм, где
D – диаметр наружного кольца подшипника,
d – диаметр внутреннего кольца подшипника,
В – ширина подшипника.
На промежуточном валу по справочнику [1] выбираем шариковые радиальные однорядные подшипники средней серии диаметров ГОСТ 8338-75.
D=72мм; d=30мм; В=19мм.
На выходном валу по справочнику [1] выбираем шариковые радиальные однорядные подшипники особолегкой серии диаметров ГОСТ 8338-75.
D=85мм; d=45мм; В=19мм.
Расчет подшипников выходного вала на долговечность.
Расчет подшипников на долговечность производится по формуле [2]:
, где
С – динамическая грузоподъемность подшипника, С=16000
р – показатель степени. При точечном контакте р=3,
Р – эквивалентная нагрузка.
Р= ,при и Fa,
Fr – радиальная нагрузка, действующая на подшипник,
Х – коэффициент радиальной нагрузки, Х=1,
V – коэффициент вращения. Так как вращается внутреннее кольцо, то V=1,
Кσ – коэффициент безопасности, Кσ=1,
Кт – температурный коэффициент, Кт=1.
Исходя из данных, полученных при расчете вала на прочность определяем суммарные реакции:
Подставляем все необходимые значения в формулу для нахождения эквивалентной нагрузки:
Р=(=1.1.1055.1.1=7243,5Н.
Рассчитываем долговечность млн. об.:
,
Рассчитываем долговечность, ч:
,
где n=114 об/мин – частота вращения ведомого вала.
Подбор и расчет шпонок.
Ведущий вал.
Диаметр шейки вала, соединяемой со ступицей звездочки цепной передачи, d=18мм. По таблице [1] выбираем призматическую шпонку по ГОСТ 8788-68, сечение и длина шпонки глубина паза t1=3,5.
Проверяем шпоночное соединение на смятие по формуле:
, где
Т2 – крутящий момент на ведущем валу, Т2=29,6.103Н.мм,
d – диаметр шейки вала, соединяемой со звездочкой,
h – высота шпонки,
t1 – глубина паза вала,
b – ширина шпонки
Промежуточный вал.
Диаметр шейки вала, на которую насажено колесо, d=35мм. По таблице [1] выбираем призматическую шпонку по ГОСТ 8788-68, сечение и длина шпонки глубина паза t1=5.
Проверяем шпоночное соединение на смятие:
Т3 – крутящий момент на промежуточном валу, Т3=72,157.103Н.мм,
Выходной вал.
Диаметр шейки вала, на которую насажено цилиндрическое колесо, d=48мм. По таблице [1] выбираем призматическую шпонку по ГОСТ 8788-68, сечение и длина шпонки глубина паза t1=5,5.
Проверяем шпоночное соединение на смятие
Т4 – момент на выходном валу, Т4=175,901.103Н.мм,
Диаметр шейки вала, на котором расположена муфта МУВП, d=40мм. По таблице [1] выбираем призматическую шпонку по ГОСТ 8788-68, сечение и длина шпонки глубина паза t1=5.
Проверяем шпоночное соединение на смятие
Компоновка редуктора
Конструктивные размеры корпуса редуктора по [2].
Толщина стенок корпуса и крышки.
δ = 0,025 . aw +3 = 0,025.125+3 = 6.125мм. Принимаем δ = 8мм.
δ1 = 0,02 . aw +3 = 0,02.125+3 = 5,5мм. Принимаем δ1 = 7,5мм.
Толщина фланцев корпуса и крышки:
- верхнего фланца корпуса:
S = 1,5.δ = 1,5.8 = 12мм. Принимаем S = 12мм.
- фланца крышки редуктора:
S1 = 1,5.δ1 = 1,5.7,5 = 11,25мм.
-нижнего фланца корпуса:
S2 = 2,35.δ = 2,35. 8 = 18,8мм. Принимаем S2 = 19мм.
Диаметры болтов:
ü фундаментных:
d1 = 0,033.aw+12 = 0,033.125+12 = 16,125мм.
Принимаем фундаментные болты М18.
крепящих крышку к корпусу у подшипника:
d2 = 0,725.d1 = 0,725.18 = 13,05мм.
Принимаем болты с резьбой М14.
ü Болтов, соединяющих крышку и корпус:
d3 = 0,55.d1 = 0,55.18 = 9,9мм.
Принимаем болты с резьбой М10.
Ширина опорной поверхности нижнего фланца корпуса
m= K+1,5d=37+1,5×8= 49
Принимаем 50.
Толщина ребер корпуса
c1=0,9.δ = 0,9.8 = 7,2
Минимальный зазор между колесом и корпусом
в = 1,2.δ = 1,2.8 = 9,6
Принимаем 10
Выбор муфты
Для соединения валов редуктора сдругими узлами имеханизмами применяем муфту упругую втулочно-пальцевую. Эта муфта обладает достаточной податливостью, позволяющей компенсировать значительную несоосность валов.
Расчетный вращающий момент определим по формуле (4.1):
,
где Т = 175,901 Н×м для тихоходного вала.
По диаметру конца быстроходного вала d = 40 мм и расчетному моменту Тр = 255 Н×м выбираем муфту с номинальным вращающим моментом Т = 500 Н×м [2, табл. 11.5, с. 277].
При предельно допустимых для муфты смещениях радиальная сила и изгибающий момент от нее невелики, поэтому при расчете валов и их опор этими нагрузками можно пренебречь.
Выбор способа смазки редуктора
Смазывание зубчатых зацеплений осуществляется окунанием в масло, заливаемое внутрь корпуса до погружения конического колеса на всю длину зуба.
Объем масляной ванны (принимается из расчета 1дм3 на 1кВт передаваемой мощности):
Устанавливаем вязкость масла [2, табл. 8.8, с. 253]:
В быстроходной паре при окружной скорости V=2,69 м/с рекомендуемвязкость масла равна 81,5 сСт; в тихоходной V=1,08 м/с и рекомендуемая вязкость масла равна 118 сСт. Среднее значение: υ= 100 сСт.
По табл. 8.10 [2] принимаем масло индустриальное И-100А (по ГОСТ 20799-75*).Подшипники смазываются тем же маслом за счет разбрызгивания.
Уровень масла контролируется жезловым маслоуказателем при остановке редуктора.
Выбор уплотнений
В качестве уплотнений принимаем манжеты резиновые армированные (по ГОСТ 8752 – 70) – манжета 1-32´52-3, манжета 1-40´60-3.
Выбор шероховатости поверхностей.
Шейки валов под подшипники и шестерни – 1,25...2,5, под манжеты – 0,32.
Торцы буртов под подшипники и шестерни – 2,5.
Поверхность зубьев – 2,5.
Остальные обработанные поверхности – 12,5.
Выбор посадок.Посадки назначаем в соответствии с указаниями, данными в [2, табл. 8,11].
Посадки зубчатых колес на валы .
Посадки муфт на валы .
Посадки распорных втулок на валы .
Посадки крышек в гнезда под подшипники .
Шейки валов под подшипники выполняем с отклонением вала k6.
Шейки валов под уплотнения – с отклонением h8.
Отклонение отверстий в корпусе под наружные кольца подшипников H7.
Сборка редуктора.Перед сборкой внутреннюю полость корпуса редуктора тщательно очистить и покрыть маслостойкой краской.
Сборка производится в соответствии со сборочным чертежом редуктора, начиная с узлов валов:
- на ведущий вал насаживают шарикоподшипники, предварительно нагретые в масле до 80 – 100 °С, и монтируют в стакане, обеспечивая натяг подшипников; на месте соединения вала со звездочкой закладывают шпонку 6 х 6 х 18.
- в промежуточный вал закладывают шпонку 10 х 8 х 32 и напрессовывают зубчатое колесо до упора в бурт; затем надевают распорную втулку, устанавливают щарикоподшипники, предварительно нагретые в масле;
- в выходной вал закладывают две шпонки 14 х 9 х 45 и 12 х 8 х 70 напрессовывают зубчатое колесо до упора в бурт вала; затем надевают распорную втулку и устанавливают шарикоподшипники, предварительно нагретые в масле.
Собранные валы укладывают в основание корпуса редуктора и надевают крышку корпуса, покрывая предварительно поверхности стыка крышки и корпуса пастой «Герметик» УЗО-М. Для центровки устанавливают крышку на корпус с помощью двух конических штифтов; затягивают болты, крепящие крышку к корпусу.
После этого ставят крышки подшипников с комплектом металлических прокладок для регулировки.
Перед постановкой сквозных крышек в проточки закладывают манжеты. Проверяют проворачиванием валов отсутствие заклинивания подшипников (валы должны проворачиваться от руки) и закрепляют крышки винтами.
Затем ввертывают пробку маслоспускного отверстия и жезловый маслоуказатель.
Заливают в корпус масло и закрывают смотровое отверстие крышкой с прокладкой из технического картона; закрепляют крышку болтами.
Собранный редуктор обкатывают и подвергают испытанию на стенде по программе, устанавливаемой техническими условиями.
ЛИТЕРАТУРА
1. Анурьев В.И. Справочник конструктора – машиностроителя. Куйбышев. М.: Машиностроение 1978.
2. Курсовое проектирование деталей машин: Учеб. Пособие для техникумов/С.А. Чернавский, Г.М. Ицкович, К.Н. Боков и др. – М.: Машиностроение, 1979. – 351 с.: ил. - 357 экз.
3. Основы проектирования деталей машин. В.Л. Устиненко, Н.Ф. Киркач, Р.А. Баласанян.- Харьков: Вища школа. 1983.- 184 с.
4. Методическое пособие по расчету цепных передач. Сост. Авдонченкова Г.Л., Пахоменко А.Н. Тольятти: ТолПИ, 1998 г.
Расчет и проектирование цилиндрических зубчатых передач: метод. указания к выполнению курсовой работы по дисциплине «Детали машин» /сост. Мельников П. А., Пахоменко А. Н. – Тольятти, ТГУ, 2003г.
... с изоляцией: Отношение номинального диаметра неизолированного провода к диаметру изолированного провода: Коэффициент заполнения паза: Площадь поперечного сечения неизолированного провода: Плотность тока в обмотке: Удельная тепловая нагрузка якоря от потерь в обмотке: Допустимое значение удельной тепловой нагрузки якоря от потерь в обмотке: Среднее ...
... ; 20. ; 21. . Полученный в расчете коэффициент насыщения отличается от принятого приблизительно до 3%, что вполне допустимо. Таблица 3 - Пусковые характеристики асинхронного двигателя с короткозамкнутым ротором с учетом вытеснения тока и насыщения от полей рассеяния № п/п Расчетные формулы Размерность Скольжение s 1 0,8 0,5 0,2 0,1 0,22=sкр 1 ...
... . t, с U, °С 0 0 500 36,5 1000 54 1500 62,3 2000 66,4 2500 68,2 3000 69,2 3600 69,7 2. Проектирование передаточного устройства 2.1 Выбор и обоснование кинематической схемы Согласно технологической схеме рабочей машины, транспортер приводится в движение электродвигателем через цепную передачу. Цепная передача отличается простотой в монтаже и эксплуатации, исключает ...
... .335 с., ил. Организационно-экономический расчёт.Консультант: Одинцова Л. А. Исследовательская часть. Охрана труда и охрана окружающей среды. В данном проекте спроектирован цех для ремонта поршневых компрессоров. Основной материал обработки серый чугун марок СЧ 21, 24 ГОСТ 1412-79. Для ремонта компрессоров применяется различное оборудование: токарные, круглошлифовальные, плоскошлифовальные, ...
0 комментариев