Билеты по математике 0 £ t £ 2p

Билеты по математике

Вопрос №6

Неприрывную кривую назыв. простой кривой (жордановой), если она не имеет точек самопересечения.

Областью называется всякое открытое связаное мн-во, т.е. такое мн-во всякая точка кот. явл. внутренней и любые две точки этого мн-ва можно соединить непрерывной кривой все точки кот. принадлежат данному мн-ву.

Область называется односвязной областью, если внутренность всякой замкнутой кривой содержит только точки данного мн-ва.

Теорема 1. Пусть Д ограниченная односвязная область пл-ти x и y, тогда для того чтобы криволинейный интеграл

Билеты по математике

был равен нулю по любой замкнутой кривой ГÌД, (где P(x,y) и Q(x,y) непрерыв. И имеет непрерыв. Частные производ. Билеты по математике и Билеты по математике) необходимо и достаточно чтобы вып. Такое равенство

Билеты по математике=Билеты по математике (2)

f(x,y)eД.

Док-во: Пусть во всей области Д вып. Равенство (2) и Г произвольная простая замкнутая кривая принадлеж. области Д. Обознач. Через обл. Д1 кот. огранич. Эта кривая Г. Применим к этой области формулу Грина:

Билеты по математике

Билеты по математике

Предположим, что интеграл равен нулю, а равенство (2) не вып. По крайней мере в одной точке (x0 ,y0) e Д

Билеты по математике

Билеты по математикеБилеты по математике

Билеты по математике

F(x0,y0)>0 , т.к. частные произв. Непрерывны в обл. Д, то ф-ция F(x,y) непрывна в этой обл. , а из этого вытекает , т.к. F(x0,y0)>0, то существует окрестность этой точки такая, что F(x,y)>0 для всех точек лежащих в нутри окр. gr кот. явл. Границей нашей окружности.

Множество точек леж. В этой окр. обознач. Д1 и применим к области Д1 ф-лу Грина:

Билеты по математике

это показывает, что не сущ. ни одной точки, где бы (2) не выполнялось. Вопрос №4

Пусть заданы 2 плоскости с введенными в прямоугольник декартовыми системами координат

Билеты по математике

 XOY и UOV. Пусть в плоскисти XOY задана область DV ограниченная кривой Г, а в плоскости UOV задана область G ограниченная кривой L

Пусть функция Билеты по математикеотображает область G в области D, где т.(u,v)e G, а т.(x,y)eD.

Будем предпологать , что функции x и y такие, что каждой точке области G соответствует точка области D и причем это соответствие такое, что различным точкам области D соответствуют различные области точки G. Причем всякая точка области D имеет единственный прообраз (u,v) в области G.

Тогда существует обратная функции Билеты по математике 

 которая взаимноодназначно отображает область D в области G. Т.к. заданием двух точек U,V одназначно определяют т.(x,y) в области D, то числа U и V принято называть координатами точек в облати D, но уже криволинейными.

Будем предпологать, что функции x(U,V) и y(U,V) имеют непрерывные частные производные по своим переменным x’y и y’x, x’v и y’v, тогда определитель функции имеет вид:

Принято называть якобианом для функций x(U,V) и y(U,V).

Можно показать,что площадь области D задана в плоскости XOY может быть выражена в криволинейных координатах следующим образом:

 Билеты по математике- прямолинейном интеграле.

Билеты по математике в криволинейных координатах.

Замена переменных.

Теорема: Пусть Z=f(x) – непрерывная функция заданая в области D и область D является образом области G через посредства функций Билеты по математике, где функции x(U,V) и y(U,V) непрерывные и имеют непрер. Частные производные, тогда справедлива след. Формула замены переменных в двойном интеграле:

Билеты по математике

Док-во: Разорвем обл.G непер. Кривыми на конечное число частичных областей. Тогда согласно формулам отображающим область G в обл. D. Эти кривые обл. G отображ. В некоторые кривые обл. D, т.е. обл. D будет разбита на конечное число (такое же как и обл. G) частичных подобластей.

Билеты по математике

Di – подобласти, i=1,2,…,n.

В каждой обл. Di выберем т.(x,y)eDi и составим интегральную сумму Римана для двойного интеграла от функции f обл. D.

Билеты по математике

Площадь обл. Di выразим в криволинейных координатах

Билеты по математике

xi=x(Ui,Vi)

yi=y(Ui,Vi)

Билеты по математике

И того, что интеграл от функции f(x,y)dxdy сущ., то $ lim sn(f) и этот lim не зависит от выбора точек в обл. Di, но тогда в качестве f(xi,yi) может быть взята точка  Билеты по математике

Билеты по математике

Билеты по математике

Мы получаем интегральную сумму Римана для интегр., что стоит справа формулы (1), поэтому переходя к lim в следующем равенстве:

Билеты по математике 

получим ф-лу (1), т.к. суммы стремятся к соответствующему интегралу.Вопрос №2

Теорема: Пусть z = f(x,y) – ограниченная функция, заданная на прямоугольнике R = [a,b;c,d], и существует двойной интеграл по этому прямоугольнику Билеты по математике

Если для " X [a,b] существует одномерный интеграл

Билеты по математике

то $ повторный интеграл

Билеты по математике

Доказательство:

Билеты по математике

Разобьем отрезки ab и cd отрезками a=x0<x1<…<xn=b, c=y0<y1<…<yn=d. Рассмотрим теперь частичный прямоугольник Rik=[xi,xi+1;yi,yi+1] mik=inf f(x,y) Mik=sup f(x,y)

Rik Rik

На промежутке [xi;xi+1] возьмём точку x. Будем рас- сматривать точки, лежащие на прямой x = x.

Получаем следующее неравенство mik£ f(x;y)£ Mik yk£ y£ yk+1 Проинтегрируем его по отрезку [yk; yk+1]

Билеты по математике

Замечание: если же существует двойной интеграл и существует одномерный интеграл

Билеты по математике

то существует повторный

Билеты по математике

Если же функция f(x;y) такова, что существует двойной интеграл по области R, существуют оба од- номерных J(y) и Ί(x), то одновременно имеют место формулы (1) и (2)

Билеты по математике

Например: если f(x;y) непрерывна в области R, то, как известно двойной интеграл, и оба одномерных существуют, а значит, справедлива формула (3) и для вычисления двойного интеграла можно пользоваться одной из формул (1) или (2), а именно выбирая ту или иную, которая даёт более простое решение.

7.Независемость криволинейного интегр. от пути интегрирования. Теор.1 и 2.

Теорема 1. Пусть D – ограниченная одно-связанная область плоскости XOY тогда что бы криволинейный интеграл Билеты по математике- Билеты по математике был равен 0 по любой замкнутой простой кривой Билеты по математике, где P(x,y) и Q(x,y) - непрерывны и имеют непрерывные частные производные Билеты по математике, необходимо и достаточно что бы во всех точках области D было Билеты по математике (2).

Док-во

достаточность: Пусть во всех точках обл. D выполнено рав-во (2) и пусть Г произвольная простая замкнутая кривая, принадлежащая области. Обозначим через D область кот-ю ограничивает эта кривая Г. Применим теперь к этой области ф-лу Грина.

Билеты по математике

Необходимость: Криволинейный интеграл в любой замкнутой простой кривой существует область D=0. Покажем, что во всех точках области D выполняется рав-во (2). (это доказуется методом от противного). Пусть интеграл = нулю, а рав-во (2) не выполняется, по крайней мере, в одной точке Билеты по математике, т.е. Билеты по математике. Пусть, Билеты по математике так что разность Билеты по математике. Пусть Билеты по математике тогда Билеты по математике. Т.к. частные производные Билеты по математике и Билеты по математике непрерывны в области D, то Билеты по математике непрерывна в этой области, а из непрерывности функций вытекает что ф-ция Билеты по математике, то существует окрестность этой точки, принадлежащая области D, так что везде в этой окрестности Билеты по математике для любой точки лежащей внутри кривой.

Билеты по математике кот-я является границей нашей окрестности Билеты по математике - множество чисел внутри Билеты по математике. Применим к Билеты по математике ф-лу Грина: Билеты по математике. Полученное противоречие показывает, что не существует не одной точки где бы равенство (2) не выполнялось.

Теорема 2 Пусть D есть односвязная область плоскости XOY в этой области заданы две непрерывные функции D(x,y) и Q(x,y) имеющие непрерывные частные производные Билеты по математике и Билеты по математике ; чтоб криволинейный интеграл не зависел от пути интегрирования Билеты по математике. Необходимо и достаточно чтоб выполнялось равенство Билеты по математике(2).

Док. Не обход. Пусть криволинейный интеграл не зависит от пути интегрирования, а зависит от начальной и конечной точки пути интегрирования.

Возьмём в области D произвольно простую замкнутую кривую Г. На этой кривой т. А и т. В

Т.к. по условию криво-ный интеграл не зависит от пути интегрирования, то интеграл по кривым АmB=AnB

Билеты по математике

Билеты по математике В силу 1-й теоремы должно выполнятся рав-во (2).

Док. Достат. Пусть выполняется рав-во (2) . Покажем, что криволенейный интеграл не зависит от пути интегрирования :

1-й случай. Берём две произвольные точки принадлежащие области D и соединяем эти точки непрерывными кривыми Билеты по математике и Билеты по математике, кот-е не имеют точек самопересечения.

Если эти кривые образуют простой замкнутый контур без самопересечения и т.к. выполняется рав-во (2), то интеграл поэтому замкнутому контуру обязан быть равен 0. Билеты по математике , Билеты по математике т.е. интеграл не зависит от кривой.

2-й случай. Пусть Билеты по математике и Билеты по математике имеют конечное число точек самопересечения

Билеты по математике

Будем двигаться от А к C1 в результате получили контурБилеты по математике и Билеты по математике. Аналогично Для всех остальных случаев.

3-й случай. Если кривые пересекаются на счётном множестве точек то интеграл по таким кривым тоже будут равны между собой ….счётное множество эквивалентное множеству натуральных чисел.9.Параметрические ур-я поа-ти, касательная плос-ть, нормаль, направляющие косинусы нормали.

Пусть поверхность задана параметрическими уравнениями :x=x(U,V) ; y=y(U,V); z=z(U,V) и функции x,y,z непрерывны и имеют непрерывные частные произвольные. Рассмотрим матрицу

На поверхности берём точки U0(x0,y0,z0) которая является образом (U0,V0) Билеты по математике. Можно показать, что в этом случае уравнение касательной к плоскости поверхности имеет вид АБилеты по математике(x-x0)+BБилеты по математике(y-y0)+CБилеты по математике(z-z0)=0 .Уравнение нормали поверхности Билеты по математике. Далее введём направляющую. Пусть поверхность задана параметрическими уравнениями и

l- угол образованный нормалью с направлением осью X

m- угол образованный нормалью с направлением осью Y

n- угол образованный нормалью с направлением осью Z,

cos l cos m cos n - называют направляющими косинусами нормали. Для направляющих косинусов нормали имеет место формула:

Билеты по математике, Билеты по математике, Билеты по математике. В знаменатели стоит двойной знак ± и всякий раз выбирают один из знаков в зависимости от направления нормали. В случае явного задания поверхности направляющие вычисляются Билеты по математике, Билеты по математике, Билеты по математике.

Билет 12

Задача о вычислении массы пространств-го тела.

Пусть в трехмерном пространстве задано тело D, причем в точках этого тела определены некоторые массы и известна плотность распределения массы, кот. явл-ся ф-цией трех переменных U=R(x,y,z).Разобьем это прост-ное тело некоторыми гладкими пов-ми на конечное число областей D1, D2,…,Dn. В каждой области Di произвол. выберем некот. точку (x,h,e)Î Di. Плотность массы в этой точке – это R(xi,hi,ei). Будем считать, что ф-ция R явл-ся непрерывной, а разбиение достат. мелким так, что значения ф-ции внутри области Di не слишком отличаються от значений ф-ции R в выбранной точке. Т.е. будем считать, что в области Di плотность массы одна и та же и равна числу R(xi,hi,ei). Тогда очевидно масса, заключенная в обл. Di , будет равняться R(xi,hi,ei) * DV. Тогда приближенное значение массы для всей области равна S R(xi,hi,ei)*DVi Пусть l - наибольший из диаметров Di – тых областей, а тогда масса , заключенная в области равна m=lim(l®0) S R(xi,hi,ei) * DVi

Пусть теперь задано пространств. тело D. В точках этого тела определена ф-ция U=f(x,y,z). Разобьем это тело на конечное число Di –тых (i=1,2,3,…). В каждой области Di выберем произвол. точку (xi,yi,zi) и составим интегральную

sn=S ò(xi,yi,zi) * DVi Если сущ. предел и он конечный и он не зависит от способа деления обл. D на части и выбора точек (xi,yi,zi) , то этот предел называют тройным интегралом по обл.D от ф-ции f(x,y,z)lim(l®0)sn=òòò f(x,y,z)dx dy dz Следовательноm=òòòR(x,y,z)dxdydz

Св-ва тройного интеграла аналогично св-м двойного интеграла 1) Всякая интегрируемая в обл. D ф-ция ограничена в этой области.

2) Могут быть построены суммы Дарбу

верх St=S Mi * DVi низ st=S mi * DVi

3) Необходимо и достаточное условие сущ. интеграла

lim(l®0)( St-st)=0

4) Как и в случае двойного интеграла сущ. тройной интеграл от любой непрерывной ф-ции, заданной в обл. D. Однако тройной интеграл сущ. и в случае, когда ф-ция f(x,y,z) имеет разрывы 1-го рода на конечном числе пов-тей данного тела D.

5)Тройной интеграл обладает св-вами линейности и аддетивности

òòòDfdx = òòòD1fdx + òòòD2 , где D=D1ÇD2

6)Если сущ. тройной интеграл от ф-ции f, то сущ. интеграл по модулю

и существует равенство

ôòòòô£ òòòôfôdv

Если функция fв области D ограничена какими-то числами m £ f £ М , то для тройного интеграла справидливо неравенство

mVd £òòò ¦dv£M VD

7) Имеет место теорема о среднем , т.е. если функция ¦(x,y,z) не-прерывная в области D , то справедливо равенство

òòò ¦dv = ¦ (X0 , Yo , Z0) (X0 , Yo , Z0)ÎD

Ввычесление тройного интеграла по параллепипеду .


Информация о работе «Билеты по математике»
Раздел: Математика
Количество знаков с пробелами: 39798
Количество таблиц: 0
Количество изображений: 8

Похожие работы

Скачать
64225
0
236

... данным, n=20 Найти матрицу А-1, обратную к матрице А и с ее помощью решить систему А =, где , = , = . Зав. кафедрой -------------------------------------------------- Экзаменационный билет по предмету МАТЕМАТИКА (углубленный курс) Билет № 12 Что называется характеристическим уравнением дифференциального уравнения II порядка с постоянными коэффициентами? По какой ...

Скачать
257002
0
22

... быть выведены на печать. На экране рисунки могут быть статическими (неподвижными) или динамическими (движущимися). В последнее время машинная графика выделилась в самостоятельный раздел информатики с многочисленными приложениями. Средствами машинной графики создается не только печатная продукция, но и рекламные ролики на телевидении, мультфильмы. Объясним, как кодируется изображение в памяти ...

Скачать
107196
22
14

... уроки сказки, веселые задачи в стихах, математические загадки, сказочные задачи, математические сказки, задачи занимательного характера, головоломки, кроссворды и логические задачи способствуют активизации мыслительной деятельности учащихся на уроках математики, подтвердилась. Для себя лично я усвоила правило: "Не бери игру на урок, для того чтобы развлечься. Все на уроке должно быть логически ...

Скачать
98993
10
0

... вероятностей совместимых событий; формулы: полной вероятности, Бейеса (Байеса). Одной из форм дифференцированного обучения по курсу теории вероятностей может являться факультативный курс. 2. Разработка программы факультативного курса по теории вероятностей в курсе математики 8 класса   2.1 Основные понятия о факультативном курсе Возможность 1-2 часа в неделю дополнительно работать со ...

0 комментариев


Наверх