4 Знакочередующиеся ряды. Признак Лейбница

Определение. Числовой ряд

a1 – a2 + a3 – … + (– 1) n - 1an + … ,

где все числа an положительны, называется знакочередующимся.

Пример. Ряд

является знакочередующимся, а ряд

знакочередующимся не является.

Для знакочередующихся рядов имеет место следующий признак сходимости, который носит название признака Лейбница.

Теорема 4 (признак Лейбница). Пусть в знакочередующемся ряде


a1 – a2 + a3 – …

числовая последовательность { an } убывает,

a1 > a2> a3> …  Тогда этот ряд сходится, причем его сумма S положительна и не превосходит первого члена:

◄ Возьмем четную частичную сумму S2n этого ряда и запишем ее в виде

S2n = (a1 – a2) + (a3 – a4) + … + (a2n-1 – a2n).

Из условия теоремы следует, что разности в скобках положительны и, значит, S2n > 0,

причем с возрастанием n частичная сумма S2n возрастает. Эту сумму можно записать

и так:

S2n = a1 – (a2 – a3) – (a4 – a5) – … – (a2n-2 – a2n-1) – a2n.

 

Здесь каждая скобка положительна, откуда следует, что

S2n < a1 (n = 1, 2, … ).

Итак, последовательность { S2n } монотонно возрастает и ограничена. Следовательно,

она имеет предел

,


причем

Для нечетной частичной суммы S2n+1 будем иметь

S2n+1 = S2n + a2n+1 (n = 1, 2, … ).

По доказанному

,

А по условию теоремы

Поэтому существует предел

.

Таким образом, доказано, что

,

т.е. данный ряд сходится. Из неравенства  следует, в частности, положительность суммы ряда. ►

Замечание. Теорема остается справедливой в части сходимости, если условие монотонности последовательности { an } будет выполняться для всех номеров n, начиная с некоторого номера N.

Пример. Знакочередующийся ряд


сходится, так как

и

Теорема 4 позволяет оценить n-й остаток

Рассматриваемого ряда, который также является знакочередующимся рядом. По абсолютной величине остаток будет не больше абсолютной величины первого своего члена, . Так как , то

т.е абсолютная погрешность, получающаяся при замене суммы знакочередующегося ряда его n-й частичной суммой, не превосходит абсолютной величины первого из отброшенных членов ряда .

Пример. Вычислить приближенно сумму ряда

 ,

Ограничившись четырьмя членами, и оценить погрешность.

◄ Сходимость ряда очевидна. Положим приближенно


Тогда

.

Абсолютная погрешность не превосходит .►

5. Знакопеременные ряды

Абсолютно и условно сходящиеся ряды

Числовой ряд

,

членами которого являются действительные числа любого знака, называется знакопеременным. Знакопеременными будут, например, ряды

 ,

(плюс, два минуса, плюс, два минуса и т.д.).

Наряду со знакопеременным рядом

рассмотрим ряд, составленный из абсолютных величин его членов, т.е.


 ,

и докажем следующую теорему.

Теорема 5. Если сходится ряд

,

то сходится и ряд

◄ Из двойного неравенства  получаем

для n = 1, 2, … .

Пусть ряд

сходится. Тогда ряд

также будет сходиться, а по признаку сравнения будет сходящимся и ряд


.

Но ряд  есть разность двух сходящихся рядов

,

поэтому он также будет сходящимся. ►

Следствие. Если ряд

сходится, то справедливо неравенство

.

◄ Для любого натурального числа k имеет место неравенство

,

т.е.

,

Переходя к пределу при , получим

,

Или

. ►

При исследовании ряда

на сходимость можно применять все достаточные признаки сходимости, установленные для знакоположительных рядов.

Замечание. Из сходимости ряда

сходимости ряда

вообще говоря, не следует, т.е. доказанная теорема дает лишь достаточное условие сходимости знакопеременного ряда.

Пример 1. Ряд

сходится по признаку Лейбница, но ряд, составленный из абсолютных величин его членов,

– это гармонический ряд, который расходится.

Определение. Знакопеременный числовой ряд

называется абсолютно сходящимся, если сходится ряд

.

Ряд

называется условно сходящимся, если он сходится, а ряд

расходится.

Пример 2. Числовой ряд


 (плюс, два минуса, плюс, два минуса и т.д.) является абсолютно сходящимся, так как ряд, составленный из абсолютных величин его членов,

 ,

сходится. Ряд из примера 1 является условно сходящимся.

Отметим следующие свойства абсолютно сходящихся и условно сходящихся рядов.

Теорема 6. Абсолютно сходящийся ряд при любой перестановке его членов остается абсолютно сходящимся, и его сумма не изменяется.

Замечание. Утверждение теоремы справедливо для любого сходящегося знакопостоянного ряда.

Условно сходящиеся ряды этим свойством не обладают.

Теорема 7. Если ряд сходится условно, то, каково бы ни было наперед взятое число A,

можно так переставить члены этого ряда, что преобразованный ряд будет иметь своей суммой число A.

Более того, члены условно сходящегося ряда можно представить так, что полученный после переустановки ряда будет расходящимся.

Пример. Рассмотрим условно сходящийся ряд

 ,

сумму которого обозначим через S. Переставим члены ряда так, чтобы за каждым положительным членом следовали два очередных отрицательных. Тогда получим ряд


Покажем, что он сходится и его сумма равна . Рассмотрим подпоследовательность его частичных

сумм :

,

=,

=, … .

Нетрудно убедится в том, что она сходится к . А из того, что

получаем, что  существует и он равен .

Таким образом, при указанной перестановке членов ряда, мы получим сходящийся ряд, сумма которого в два раза меньше суммы исходного ряда


Список использованных источников

1. «Курс математического анализа», автор – Никольский С.М., г. Москва, изд. «Наука», 1990г.

2. «Высшая математика», автор – Щипачев А.В., г. Москва, изд. «Высшая школа», 1996г.


Информация о работе «Знакочередующиеся и знакопеременные ряды»
Раздел: Математика
Количество знаков с пробелами: 11661
Количество таблиц: 0
Количество изображений: 1

Похожие работы

Скачать
15002
0
1

... получаться также абсолютно сходящиеся ряды, при этом сумма ряда не изменяется. Как указывалось в разделе 2, условно сходящиеся ряды таким свойством не обладают. Вопросы для самопроверки   1. Как определяется сумма числового ряда? 2. Какой ряд называется сходящимся (расходящимся)? 3. Может ли предел общего члена сходящегося числового ряда равняться 3? 4. Что можно сказать о сходимости чи

Скачать
33388
0
0

... , то отрицательны. Т.Лейбница: Если члены знакочередующегося ряда убывают по абсолютной величине U1>U2>U3… и предел его общего члена при n®¥ равен 0 (Lim n®¥ Un=0), то ряд сходится, а его сумма не превосходит первого члена: U1³S. Д: Рассмотрим последовательность частичных сумм четного числа членов при n=2m: S2m=(U1-U2)+(U3-U4)+…+(U2m-1-U2m). Эта последовательность ...

Скачать
3450
0
28

... такой же ряд, но члены имеют обратные знаки. . 9.3.7. а) Проверяем концы интервалов 1) Признак Лейбница выполняется, ряд сходится. При  получится такой же ряд (т.к. x в четной степени). б) 9.3.8. а) Условие сходимости . Найдем дискриминант знаменателя: D=64-72<0. Условие принимает вид Интервал сходимости . На концах интервала Получаем один и ...

Скачать
23337
0
1

повторный по формуле: Сначала вычисляется внутренний интеграл, затем внешний. При вычислении внутреннего интеграла ‘х’ считается переменной, а ‘у’-постоянной. 3. Если область интегрирования не относится ни к 1 ни ко второму случаю, то разбиваем ее на части таким образом, чтобы каждая из частей относилась к одному из этих двух видов.   Вычисление объемов тел с помощью двойного ...

0 комментариев


Наверх