Содержание

Двойные интегралы

Определение определенного интеграла

Правило вычисления двойного интеграла.

Вычисление объемов тел с помощью двойного интеграла

Вычисление площадей поверхностей фигур с помощью двойного интеграла.

Тройные интегралы

Вычисление объемов тел с помощью тройного интеграла.

Несобственные интегралы.

Дифференциальные уравнения.

1. Дифференциальные уравнения первого порядка с разделяющимися переменными

2. Однородные дифференциальные уравнения первого порядка

3. Линейные дифференциальные уравнения

4. Уравнения Бернулли

Дифференциальные уравнения второго порядка.

Три случая понижения порядка.

Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами.

Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами.

Комплексные числа

Геометрическое изображение комплексных чисел

Действия над комплексными числами.

Произведение.

Частное.

Возведение в степень.

Извлечение корня

Ряды.

Числовые ряды.

Свойства числовых рядов.

Знакоположительные ряды

Признаки сходимости и расходимости знакоположительных рядов.

Знакопеременные и знакочередующиеся ряды.


ДВОЙНЫЕ ИНТЕГРАЛЫ

 

Определение определенного интеграла

- интегральная сумма.

 

Геометрический смысл ОИ: равен площади криволинейной трапеции.

Аналогично ОИ выводится и двойной интеграл.

Пусть задана функция двух переменных z=f(x,y), которая определена в замкнутой области S плоскости ХОУ.

Интегральной суммой для этой функции называется сумма

Она распространяется на те значения i и к, для которых точки (xi,yk) принадлежат области S.


Двойной интеграл от функции z=f(x,y), определенной в замкнутой области S плоскости ХОУ, называется предел соответствующей интегральной суммы.

 

Правило вычисления двойного интеграла

Двойной интеграл вычисляется через повторные или двукратные интегралы. Различаются два основных вида областей интегрирования.


1. (Рис.1) Область интегрирования S ограничена прямыми х=а, х=в и кривыми

.

Для такой области двойной интеграл вычисляется через повторный по формуле:

Сначала вычисляется внутренний интеграл:

При вычислении внутреннего интеграла ‘у’ считается переменной, а ‘х’-постоянной.

2. (Рис.2) Область интегрирования S ограничена прямыми у=С, у=d и кривыми

.

Для такой области двойной интеграл вычисляется через повторный по формуле:

Сначала вычисляется внутренний интеграл, затем внешний.

При вычислении внутреннего интеграла ‘х’ считается переменной, а ‘у’-постоянной.

3. Если область интегрирования не относится ни к 1 ни ко второму случаю, то разбиваем ее на части таким образом, чтобы каждая из частей относилась к одному из этих двух видов.

 

Вычисление объемов тел с помощью двойного интеграла

Объем тела, ограниченного сверху поверхностью z=f(x,y), снизу- плоскостью z=0 (плоскость ХОУ) и с боков- цилиндрической поверхностью, вырезающей на плоскости ХОУ область S, вычисляется по формуле:


Вычисление площадей поверхностей фигур с помощью двойного интеграла

Если гладкая поверхность задана уравнением z=f(x,y), то площадь поверхности (Sпов.), имеющей своей проекцией на плоскость ХОУ область S, находится по формуле:

- площадь поверхности.

 


ТРОЙНЫЕ ИНТЕГРАЛЫ

Определяется аналогично двойному интегралу.

Тройной интеграл от функции U=f(x,y,z), распространенным на область V, называется предел соответствующей трехкратной суммы.

Вычисление тройного интеграла сводится к последовательному вычислению обыкновенных (однократных) нтегралов.

 

Вычисление объемов тел с помощью тройного интеграла

Объем тела вычисляется по формуле:


НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ

Это интегралы: - с бесконечными пределами; - от неограниченной функции.

Первый вид

Несобственные интегралы с бесконечными пределами имеют вид:

; ;

Несобственные интегралы от функции в пределах от (а) до () определяются равенством.

1.; 2. ; 3.

Если этот предел существует и конечен, то несобственный интеграл называется сходящимся; если предел не существует или равен бесконечности, то несобственный интеграл называется расходящимся (ряд сходится или расходится?). Это и есть ответ.

 

Второй вид

Несобственные интегралы от неограниченной функции имеют вид: , где существует точка “с” (точка разрыва) такая, что ; , т.е. (в частности c=a; c=b).

Если функция f(x) имеет бесконечный разрыв в точке “с” отрезка [a;b] и непрерывна при или , то полагаем:

Если пределы в правой части последнего равенства существуют и конечны, то несобственный интеграл сходится, если пределы не существуют или равны бесконечности - то расходятся.

 


ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

 


Информация о работе «Основные понятия математического анализа»
Раздел: Математика
Количество знаков с пробелами: 23337
Количество таблиц: 0
Количество изображений: 1

Похожие работы

Скачать
18316
0
0

... некая иерархическая структура. Третья идея ССА широкое использование графических нотаций, что облегчает понимание сложных систем. В результате можно дать следующее определение ССА: структурным системным анализом называется метод исследования, проектирования и описания сложных систем в виде иерархии "черных ящиков" с помощью графических средств. Другие принципы ССА Методология ССА строится ...

Скачать
28459
2
2

... педагогически значимого подмножества, на основе которого можно было бы провести углубленное изучение понятия экстремума в его взаимосвязях с другими понятиями математического анализа. Во-вторых, объективно получается, что традиционные коллекции упражнений созданы не столько для изучения понятия экстремума, сколько для иллюстрации методов дифференциального исчисления для его отыскания. Этого вполне ...

Скачать
18290
1
4

... Итак, работа переменной силы , величина которой есть непрерывная функция F = F(x), действующая на отрезке [a; b], равна определенному интегралу от величины F(x) силы, взятому по отрезу [a; b]. В этом состоит механический смысл определенного интеграла. Аналогично можно показать, что путь S, пройденный точкой за промежуток времени от t = a до t = b, равен определенному интегралу от скорости v(t): ...

Скачать
31365
0
0

... «Математических лекциях о методе интеграла»[9]. Здесь дан способ взятия большинства элементарных интегралов и указаны методы решения многих дифференциальных уравнений первого порядка.   2 Вклад Л.Эйлера в развитие математического анализа   Леонард Эйлер (Euler, Leonhard) (1707–1783) входит в первую пятерку величайших математиков всех времен и народов. Родился в Базеле (Швейцария) 15 апреля ...

0 комментариев


Наверх