2.  Обратный ход.

На втором этапе осуществляется так называемый обратный ход, суть которого заключается в том, чтобы выразить все получившиеся базисные переменные через небазисные и построить фундаментальную систему решений, либо, если все переменные являются базисными, то выразить в численном виде единственное решение системы линейных уравнений.

Эта процедура начинается с последнего уравнения, из которого выражают соответствующую базисную переменную (она в нем всего одна) и подставляют в предыдущие уравнения, и так далее, поднимаясь по «ступенькам» наверх.

Каждой строчке соответствует ровно одна базисная переменная, поэтому на каждом шаге, кроме последнего (самого верхнего), ситуация в точности повторяет случай последней строки.

Примечание: на практике удобнее работать не с системой, а с расширенной ее матрицей, выполняя все элементарные преобразования над ее строками. Удобно, чтобы коэффициент a11 был равен 1 (уравнения переставить местами, либо разделить обе части уравнения на a11).

2.2  Примеры решения СЛАУ методом Гаусса

В данном разделе на трех различных примерах покажем, как методом Гаусса можно решить СЛАУ.

Пример 1. Решить СЛАУ 3-го порядка.

\left\{\begin{array}{ccc}2x + y - z &=& 8 \\-3x - y + 2z &=& -11 \\-2x + y + 2z &=& -3 \end{array}\right.

Обнулим коэффициенты при x\! во второй и третьей строчках. Для этого домножим их на 2/3 и 1 соответственно и сложим с первой строкой:

\left\{\begin{array}{rcc}2x + y - z &=& 8 \\\frac{1}{3}y + \frac{1}{3}z &=& \frac{2}{3} \\2y + z &=& 5 \end{array}\right.

Теперь обнулим коэффициент при y\! в третьей строке, домножив вторую строку на 6 и вычитая из неё третью:


\left\{\begin{array}{rcc}2x + y - z &=& 8 \\2y + 2z &=& 4 \\z &=& -1 \\ \end{array}\right.

В результате мы привели исходную систему к треугольному виду, тем самым закончив первый этап алгоритма.

На втором этапе разрешим полученные уравнения в обратном порядке. Имеем:

z = -1\! из третьего;

y = 3\! из второго, подставив полученное z\!;

x = 2\! из первого, подставив полученные z\! и y\!.

В случае, если число уравнений в совместной системе получилось меньше числа неизвестных, то тогда ответ будет записываться в виде фундаментальной системы решений.

Пример 2. Решить неопределенную СЛАУ 4-го порядка:

lect3

В результате элементарных преобразований над расширенной матрицей системы

lect3


исходная система свелась к ступенчатой, где количество уравнений меньше, чем количество неизвестных:

lect3

Поэтому общее решение системы: x2=5x4–13x3–3; x1=5x4–8x3–1. Если положить, например, что x3=0, x4=0, то найдем одно из частных решений этой системы x1=-1, x2=-3, x3=0, x4=0.

Пример 3. Решить СЛАУ 4-ого порядка.

Условие:

lect3

х1 – 2х2 – х3 + х4 = 1

х1 – 8х2 – 2х3 – 3х4 = -2

2х1 + 2х2 – х3 + 7х4 = 7

х1 + х2 + 2х3 + х4 = 1

 

Перепишем систему линейных алгебраических уравнений в матричную форму. Получится матрица 4х5, слева от разделительной линии стоят коэффициенты при переменных, а справа стоят свободные члены.

1 -2 -1 1 | 1

1 -8 -2 -3 | -2

2 2 -1 7 | 7

1 1 2 1 | 1

Проведём следующие действия:

a)  из второй строки вычтем первую строку (cтрока 2 – строка 1);

b)  из третьей строки вычтем первую строку, умноженную на 2 (cтрока 3–2 х строка 1)

c)  из четвертой строки вычтем первую строку (cтрока 4 – строка 1). Получим:

1 -2 -1 1 | 1

0 -6 -1 -4 | -3

0 6 1 5 | 5

0 3 3 0 | 0

Проведём следующие действия:

a)  к третьей строке прибавим вторую строку (строка 3 + строка 2);

b)  четвертую строку поделим на 3 (строка 4 = строка 4 / 3). Получим:

1 -2 -1 1 | 1

0 -6 -1 -4 | -3

0 0 0 1 | 2

0 1 1 0 | 0

Проведём следующие действия:

a)  четвертую строку поставим на место второй строки;

b)  третью строку поставим на место четвертой строки;

c)  вторую строку поставим на место третьей строки. Получим:

1 -2 -1 1 | 1

0 1 1 0 | 0

0 -6 -1 -4 | -3

0 0 0 1 | 2

К третьей строке прибавим вторую строку, умноженную на 6 (строка 3 + 6 × строка 2). Получим:

1 -2 -1 1 | 1

0 1 1 0 | 0

0 0 5 -4 | -3

0 0 0 1 | 2

Проведём следующие действия:

a)  к третьей строке прибавим четвертую, умноженную на 4 (строка3 + 4×строка4);

b)  из первой строки вычтем четвертую строку (строка 1 – строка 4);

c)  третью строку поделим на 5 (строка 3 = строка 3 / 5). Получим:

1 -2 -1 1 | 1

0 1 1 0 | 0

0 0 1 0 | 1

0 0 0 1 | 2

Проведём следующие действия:

a)  из второй строки вычтем третью строку (строка 2 – строка 3);

b)  к первой строке прибавим третью строку (строка 1 + строка 3). Получим:

1 -2 0 0 | 0

0 1 0 0 | -1

0 0 1 0 | 1

0 0 0 1 | 2

c)  К первой строке прибавим вторую строку, умноженную на 2 (строка 1 + 2 × строка 2). Получим:

1 0 0 0 | -2

0 1 0 0 | -1

0 0 1 0 | 1

0 0 0 1 | 2

В левой части матрицы по главной диагонали остались одни единицы. В правом столбце получаем решение:

х1 = -2

х2 = -1

х3 = 1

х4 = 2


3.  Преимущества и недостатки метода Гаусса

 

Итак, метод Гаусса применим к любой системе линейных уравнений, он идеально подходит для решения систем, содержащих больше трех линейных уравнений. Метод Гаусса решения СЛАУ с числовыми коэффициентами в силу простоты и однотипности выполняемых операций пригоден для счета на электронно-вычислительных машинах.

Достоинства метода:

a)  менее трудоёмкий по сравнению с другими методами;

b)  позволяет однозначно установить, совместна система или нет, и если совместна, найти её решение;

c)  позволяет найти максимальное число линейно независимых уравнений – ранг матрицы системы.

Существенным недостатком этого метода является невозможность сформулировать условия совместности и определенности системы в зависимости от значений коэффициентов и свободных членов. С другой стороны, даже в случае определенной системы этот метод не позволяет найти общие формулы, выражающие решение системы через ее коэффициенты и свободные члены, которые необходимо иметь при теоретических исследованиях.

Помимо аналитического решения СЛАУ, метод Гаусса также применяется для:

a)  нахождения матрицы, обратной к данной (к матрице справа приписывается единичная такого же размера, что и исходная: [A|E]\!, после чего A\! приводится к виду единичной матрицы методом Гаусса–Жордана; в результате на месте изначальной единичной матрицы справа оказывается обратная к исходной матрица: [E|A^{-1}]\!);

b)  определения ранга матрицы (согласно следствию из теоремы Кронекера–Капелли ранг матрицы равен числу её главных переменных);

c)  численного решения СЛАУ в вычислительной технике (ввиду погрешности вычислений используется Метод Гаусса с выделением главного элемента, суть которого заключена в том, чтобы на каждом шаге в качестве главной переменной выбирать ту, при которой среди оставшихся после вычёркивания очередных строк и столбцов стоит максимальный по модулю коэффициент).

Существуют и другие методы решения и исследования систем линейных уравнений, которые лишены отмеченных недостатков. Эти методы основаны на теории матриц и определителей.


Список источников

 

1.  Кремер Н.Ш., Путко Б.А. Высшая математика для экономистов. - М.: Учеб. пособие, 1998.

2.  Курош А.Г. Курс высшей алгебры. - М.: Учеб. пособие, 1968.

3.  Справочник по математике для экономистов. Под ред. В.И. Ермакова // Инфра-М, Москва – 2009.


Информация о работе «Метод Гаусса для решения систем линейных уравнений»
Раздел: Математика
Количество знаков с пробелами: 12957
Количество таблиц: 0
Количество изображений: 3

Похожие работы

Скачать
11848
0
3

... "деление" для матриц не вводится. Для квадратных невырожденных матриц вводится обратная матрица. С понятием обратной матрицы можно познакомиться в рекомендуемой литературе. 2 – ой учебный вопрос РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ МЕТОДОМ ГАУССА Метод Гаусса (или метод последовательного исключения неизвестных) применим для решения систем линейных уравнений, в которых число неизвестных ...

Скачать
43269
5
8

... . При этом собственно нахождение обратной матрицы – процесс достаточно трудоемкий и его программирование вряд ли можно назвать элементарной задачей. Поэтому на практике чаще применяют численные методы решения систем линейных уравнений. К численным методам решения систем линейных уравнений относят такие как: метод Гаусса, метод Крамера, итеративные методы. В методе Гаусса, например, работают над ...

Скачать
25754
0
6

... , с помощью которых в последующем решение систем линейных уравнений станет намного проще, понятнее и быстрее. Цель моей работы заключается в том, чтобы изучить различные способы решения систем линейных уравнений для применения их на практике. Для достижения любой цели необходимо выполнить какие-то определенные задачи. Мне нужно выполнить следующие задачи: исследовать литературу по темам матриц, ...

Скачать
33571
2
14

... Рисунок 1.1 - Схема информационных потоков для вычисления СЛАУ методом Гаусса Условные обозначения к рисунку 2.1:  - данные, вводимые с клавиатуры  - данные, хранящиеся на диске  - данные, выводимые на экран 2. Решение систем линейных алгебраических уравнений методом гаусса 2.1 Основные понятия Система линейных алгебраических уравнений (СЛАУ) из m уравнений с n неизвестными ...

0 комментариев


Наверх