1.1.2.2. Условия окисления ПАН-волокна

К основным параметрам окисления ПАН-волокна относятся температура, время и ориентационное вытягивание. Температура и время (Т. t) взаимно связаны и определяются многими факторами.

Окисление ПАН-волокна кислородом воздуха — типично гетерогенный процесс, поэтому особое значение приобретает полнота окисления всей массы волокна.

Приводимые в литературе температурные режимы можно подразделить на 3 группы: мягкие (до 2200С), средние (220-2500С), жесткие (выше 250 °С). Естественно, что продолжительность процесса снижается с повышением температуры. Приводится значение этого параметра, находящееся в пределах 0,5—24 ч. По первому варианту, разработанному в Англии, окисление проводилось при 220 °С в течение 24 ч, т. е. в мягких условиях, но продолжительное время.

Окисление является наиболее продолжительной стадией технологического процесса получения УВ, поэтому изыскиваются пути его сокращения.

1.1.3. Высокотемпературная обработка (карбонизация и графитация) окисленного ПАН волокна

В процессе высокотемпературной обработки осуществляется переход от органического к углеродному волокну, сопровождающийся сложными химическими и структурными преобразованиями полимера, ароматизацией углерода и формированием структуры углеродного волокна. Одновременно происходит изменение физико-химических и механических свойств материала. Отобразить эти процессы в виде конкретных химических уравнений не представляется возможным. Этот сложный переход можно разделить на три основных стадии: при температурах 200—600°С протекают наиболее важные химические процессы; в интервале 400—1200°C формируются основные элементы структуры УВ; при температурах выше 1200 °С происходят преимущественно физические изменения, связанные с совершенствованием структуры УВ.

Отщепление азота начинается при 700°С и заканчивается при высоких температурах. Даже при 1000°С его содержание в волокне составляет 6%. По некоторым данным, в волокне, полученном при Т 1500 °С, все еще содержатся небольшие количества азота. При столь высоких температурах азот может находиться только в гетероциклах, которые распадаются с его выделением.

1.1.3.2. Условия проведения карбонизации и графитации волокна

К основным параметрам процесса относится среда, температура, продолжительность процесса и вытягивание.

Защитной средой при высокотемпературной обработке служит азот, который наиболее доступен среди инертных газов. В лабораторной практике кроме азота применяется гелий и аргон; иногда обработку осуществляют в глубоком вакууме.

В условиях высоких температур резко возрастают скорости реакций, поэтому к чистоте азота предъявляются высокие требования; содержание кислорода в азоте должно быть минимальным.

В процессе карбонизации в результате глубоких химических превращений промежуточных продуктов распада на поверхности УВ осаждается аморфный углерод, снижающий качество волокна, особенно композита. Для удаления этого углерода предложено к инертному газу добавлять кислород (5•106 — 25•105), окисляющий аморфный углерод. Необходимо соблюдать точную дозировку кислорода, так как при избытке его происходит окисление волокна и ухудшение его свойств, а также уменьшение срока службы нагревателей.

Важнейшим параметром является ТТО. С увеличением ТТО изменяются структура и механические свойства волокна, поэтому, заканчивая процесс при разных ТТО, можно получать углеродные волокна с различными свойствами и предназначенные для разных целей.

С ростом температуры обработки происходит спонтанное совершен­ствование структуры; в частности, улучшается ориентация волокна, спо­собствующая росту модуля Юнга. Размеры турбостратных кристаллов возрастают: La до 250 A0, Lc до 100 А0. Наблюдается более сложная зависимость прочности от ТТО.

Своеобразно, но вполне закономерно изменяется плотность УВ. Вначале (примерно до 1000 °С) с увеличением ТТО она круто возрастает, затем начинает убывать, достигая минимума примерно при 1500°С, т. е. на стадии предкристаллизационного состояния, что дополнительно подтверждает разупорядочение структуры волокна в этой области температур, и затем снова возрастает. Электрическое сопротивление резко снижается при возрастании температуры обработки до 1400—1500°С; при более высокой температуре оно уменьшается незначительно. В лабораторных условиях графитацию проводят при температуре до 3000 °С. На практике максимальная температура, видимо, не превышает 2400—2600 °С, так как эксплуатация оборудования при более высоких температурах с практической точки зрения мало приемлема. В зависимости от назначения волокна процесс может заканчиваться при более низких температурах (1000—2000 °С) с получением карбонизованного волокна. Содержание углерода в графитированном волокне выше 99%, в карбонизованном — до 95%, продолжительность высокотемпературной обработки составляет от нескольких минут до 2,5 ч.

Переход от органического к углеродному волокну целесообразно подразделить на две стадии:

низкотемпературная; на этой стадии происходят основные химические процессы и наблюдается максимальная потеря массы; подъем температуры должен быть медленный;

высокотемпературная (структурные преобразования); эта стадия должна протекать при быстром подъеме температуры. Вероятно,чем медленнее протекают процессы на первой стадии получения УВ, тем более благоприятные условия создаются для образования совершенной структры, определяющей свойства УВ. Однако слишком медленные процессы невыгодны по экономическим соображениям из-за снижения производительности оборудования. В подобных случаях выбирают разумные временные режимы, обеспечивающие получение продукции высокого качества без снижения производительности оборудования.

ПАН-волокна обладают уникальными, пожалуй, только им присущими свойствами, облегчающими получение из них углеродного волокна. Вытягивание во время окисления позволяет проводить последующую карбонизацию без вытягивания или с незначительной вытяжкой или, наконец, даже с небольшой усадкой. Высокотемпературная обработка сопровождается самопроизвольным совершенствованием структуры, что обеспечивает получение волокна с высокими показателями и упрощает технологию. Физико-химическим основам получения УВ на основе ПАН волокон посвящена обширная литература.


Информация о работе «Композиционные хемосорбционные волокнистые материалы "Поликон К", наполненные углеродными волокнами»
Раздел: Химия
Количество знаков с пробелами: 55345
Количество таблиц: 4
Количество изображений: 3

0 комментариев


Наверх