КОНТРОЛЬНАЯ РАБОТА

по высшей математике
Содержание:

1. Пределы последовательностей и функций. 2

2. Производная и дифференциал. 3

3 Геометрические изложения и дифференцированные исчисления (построение графиков) 4

4. Неопределенный интеграл. 7

5. Определенный интеграл. 9

6. Функции нескольких переменных, дифференцированных исчислений. 11

Литература. 12

1. Пределы последовательностей и функций

 

Числовой последовательностью  называется числовая функция, определенная на множестве натуральных чисел. Задать числовую последовательность означает задать закон, по которому можно определить значение любого члена последовательности, зная его порядковый номер п; для этого достаточно знать выражение общего или п-го члена последовательности в виде функции его номера: .

В основе всех положений математического анализа лежит понятие предела числовой последовательности. Число А называется пределом числовой последовательности , если для любого сколь угодно малого положительного числа e существует такой номер , зависящий от выбранного e, начиная с которого все члены последовательности отличаются от А по модулю меньше, чем на e, т. е.

при .

Если последовательность  имеет предел А, то она называется сходящейся (к числу А) и этот факт записывают следующим образом:

.

Пусть функция  определена в некоторой окрестности точки . Выберем в некоторой окрестности этой точки какую-нибудь последовательность  сходящуюся к точке : . Значения функции в выбранных точках образуют последовательность , и можно ставить вопрос о существовании предела этой последовательности.

Число А называется пределом функции  в точке , если для любой сходящейся к  последовательности значений аргумента, отличных от , соответствующая последовательность значений функции сходится к числу А, т. е.

.

Возможно иное определение предела функции в точке: число А называется пределом функции при , если для всякого положительного числа e можно указать другое положительное число d (зависящее от выбора e) такое, что абсолютная величина разности  будет меньше e, когда абсолютная величина разности  будет меньше , но больше нуля

, если  при .

Таким образом, первое определение предела функции основано на понятии предела числовой последовательности, и его называют определением на «языке последовательностей». Второе определение носит название «на языке ».

Кроме понятия предела функции в точке, существует также понятие предела функции при стремлении аргумента к бесконечности: число А называется пределом функции  при , если для любого числа  существует такое число d, что при всех  справедливо неравенство : .

Теоремы о пределах функций являются базой для общих правил нахождения пределов функций. Можно показать, что арифметические операции над функциями, имеющими предел в точке , приводят к функциям, также имеющим предел в этой точке.

Примеры

Найти предел функции

Решение: Имеем неопределенность вида . Для ее раскрытия разложим числитель и знаменатель на множители и сократим на общий множитель , который при  не равен нулю. В результате неопределенность будет раскрыта.

2. Производная и дифференциал

Пусть функция  определена в некоторой окрестности точки .

Производной функции  в точке  называется предел отношения , когда  (если этот предел существует). Производная функции  в точке  обозначается

.

Например, выражение  следует понимать как производную функции  в точке .

Определение производной можно записать в виде формулы

.  (4.1)

Предел (4.1) может не существовать. В этом случае говорят, что функция  не имеет производной в точке . Если предел (4.1) равен , то говорят, что функция  имеет в точке  бесконечную производную.

В различных задачах (в том числе и экономических) производная функции  интерпретируется как скорость изменения величины y относительно x. Геометрический смысл производной состоит в том, что  – это тангенс угла наклона касательной к графику  в точке .

Нахождение производной функции называется дифференцированием этой функции. Если функция в точке х имеет конечную производную, то функция называется дифференцируемой в этой точке.

Укажем правила дифференцирования, которые сводят вычисление производных одних функций к вычислению производных других (более простых) функций.

Если функции  дифференцируемы в точке , то сумма, разность, произведение и частное этих функций также дифференцируемы в точке , и справедливы следующие формулы

.

Если функция  имеет обратную функцию  и в точке  производная , то обратная функция  дифференцируема в точке  и или .

Если функция  дифференцируема в точке  и , то сложная функция  также дифференцируема в  и верна следующая формула

или .

Пример.

Найти производную функции

Решение:

3 Геометрические изложения и дифференцированные исчисления (построение графиков)

Функция , определенная во всех точках промежутка , называется возрастающей (убывающей) в этом промежутке, если для любых двух значений аргумента, принадлежащих этому промежутку, большему из них соответствует большее (меньшее) значение функции, т. е,

если  то при

 – возрастающая,  – убывающая.

Из данного определения вытекает, что для возрастающей функции приращения аргумента и функции имеет один и тот же знак, в силу чего их отношение положительно: . Для убывающей функции эти приращения имеют разные знаки, в силу чего . Те значения аргумента, при которых функция достигает своих наибольших и наименьших по сравнению с близкими значений, называются точками максимума и минимума (точками экстремума).

Точка  называется точкой максимума (минимума) непрерывной функции , а значение  называется максимумом (минимумом) этой функции, если существует некоторая окрестность точки  такая, что значение функции в любой точке этой окрестности будет меньше (больше), чем ее значение в самой точке , т. е. меньше (больше), чем максимум (минимум)  (рис. 1).

у max у

 

min

f(х0) f(х0)

О х0–d х0 х0+d х О х0–d х0 х0+d х

точка максимума точка минимума

Рис. 1

Из определений точек экстремума следует, что вне d-окрестности точки экстремума поведение функции произвольно, т. е. понятия максимума и минимума функции носят характер локальных (местных), а не абсолютных понятий.

Чтобы установить признаки возрастания и убывания и признаки экстремума функций, рассмотрим ряд важных теорем математического анализа, на которые опираются все дальнейшие исследования функций.

Рекомендуется исследование функций проводить в определенной последовательности.

1. Найти область определения функции; точки разрыва и их характер; вертикальные асимптоты графика.

2. Определить возможный тип симметрии функции (четность, нечетность функции); точки пересечения графика функции с осями координат, т. е. решить уравнения  и .

3. Найти наклонные и горизонтальные асимптоты графика функции.

4. Использовать первую производную для определения области возрастания и убывания и экстремумов функции.

5. Использовать вторую производную для определения участков выпуклости и вогнутости графика и точек перегиба.

6. Построить график функции с учетом проведенного исследования.

 

Пример. Провести полное исследование функции

Решение:

Проведем полное исследование функции, используя следующую схему:

найти область определения функции; исследовать на четность и нечетность функцию; найти точки разрыва функции; найти асимптоты (вертикальные, наклонные и горизонтальные) графика функции; найти точки пересечения графика функции с координатными осями; исследовать функцию на монотонность (указав интервалы возрастания и убывания) и экстремум; определить интервалы выпуклости и вогнутости графика функции, точки перегиба; при необходимости вычислить значения функции в дополнительных точках; построить схематично график функции, используя результаты полученные в пунктах 1-8.

Областью определения функции является множество .

Так как  и , то функция не является ни четной, ни нечетной.

Функция претерпевает разрыв в точке .

Найдем асимптоты графиков функции:

а). Прямая  является вертикальной асимптотой, т.к.

,

б). Находим наклонные и горизонтальные асимптоты (горизонтальные асимптоты являются частным случаем наклонных асимптот) ,

где ;

Таким образом, прямая  является единственной наклонной асимптотой и на , и на .

Найдем точки пересечения графика функции с осями координат.

а) С осью : , , т.е. точка пересечения с осью  - .

б) С осью : , , т.е. точка пересечения с осью  - .


Информация о работе «Производная, дифференциал и интеграл»
Раздел: Математика
Количество знаков с пробелами: 18962
Количество таблиц: 4
Количество изображений: 6

Похожие работы

Скачать
22351
0
8

... дробей m и n; 2)    если  Z, то используется подстановка: a+bxn=ts, где s – знаменатель дроби 3)    если  Z, то применяется подстановка: ax-n+b=ts, где s – знаменатель дроби 9.    Понятие определенного интеграла, его геометрический смысл. Определение. Если существует конечный передел интегральной суммы (8)  - (8) при λ→0, не зависящий от способа разбиения &# ...

Скачать
16141
0
0

... элементарной функцией, то первообразная от элементарной функции может оказаться и не представимой с помощью конечного числа элементарных функций. Из определения 2 следует: 1.Производная от неопределенного интеграла равна подынтегральной функции, т.е.если F′ (x)= f(x), то и  (∫ f(x)dx)′= (F(x)+C)′=f(x). (4) Последнее равенство нужно понимать в том смысле, что ...

Скачать
27370
0
5

... по алгебре и началам анализа, при подготовке к государственной итоговой аттестации, внешнему независимому оцениванию. Достаточно большое число задач раскрывают потенциальные возможности анализа бесконечно малых величин. 1. Производная и ее применение для решения прикладных задач 1.1 Исторические сведения Ряд задач дифференциального исчисления был решен еще в древности. Они встречались у ...

Скачать
10727
0
0

... в потенциальную, и обратно. Но на рубеже 17-18 веков никто не догадался, что именно законы сохранения составляют следующий по глубине слой природных закономерностей. Их понимание потребовало новой революции в математике: изучения природных симметрий с помощью теории групп. Ее создание и применение заняло весь 19 век и большую часть 20 века. Предугадать такое развитие математики Ньютон не мог - ...

0 комментариев


Наверх