Теоретические вопросы
Понятие первообразной функции. Теорема о первообразных.
Основной задачей дифференциального исчисления является нахождение производной f’(x) или дифференциала df=f’(x)dx функции f(x). В интегральном исчислении решается обратная задача. По заданной функции f(x) требуется найти такую функцию F(x), что F’(х)=f(x) или dF(x)=F’(x)dx=f(x)dx.
Таким образом, основной задачей интегрального исчисления является восстановление функции F(x) по известной производной (дифференциалу) этой функции. Интегральное исчисление имеет многочисленные приложения в геометрии, механике, физике и технике. Оно дает общий метод нахождения площадей, объемов, центров тяжести и т. д..
Определение. Функция F(x), , называется первообразной для функции f(x) на множестве Х, если она дифференцируема для любого и F’(x)=f(x) или dF(x)=f(x)dx.
Теорема. Любая непрерывная на отрезке [a; b] функция f(x) имеет на этом отрезке первообразную F(x).
Теорема. Если F1(x) и F2(x) – две различные первообразные одной и той же функции f(x) на множестве х , то они отличаются друг от друга постоянным слагаемым, т. е. F2(x)=F1x)+C, где С – постоянная.
Неопределенный интеграл, его свойства.Определение. Совокупность F(x)+C всех первообразных функции f(x) на множестве Х называется неопределенным интегралом и обозначается:
- (1)
В формуле (1) f(x)dx называется подынтегральным выражением, f(x) – подынтегральной функцией, х – переменной интегрирования, а С – постоянной интегрирования.
Рассмотрим свойства неопределенного интеграла, вытекающие из его определения.
1. Производная из неопределенного интеграла равна подынтегральной функции, дифференциал неопределенного интеграла равен подынтегральному выражению:
и .
2. Неопределенный интеграл от дифференциала некоторой функции равен сумме этой функции и произвольной постоянной:
3. Постоянный множитель а (а≠0) можно выносить за знак неопределенного интеграла:
4. Неопределенный интеграл от алгебраической суммы конечного числа функций равен алгебраической сумме интегралов от этих функций:
5. Если F(x) – первообразная функции f(x), то:
6 (инвариантность формул интегрирования). Любая формула интегрирования сохраняет свой вид, если переменную интегрирования заменить любой дифференцируемой функцией этой переменной:
где u – дифференцируемая функция.
Таблица неопределенных интегралов.Приведем основные правила интегрирования функций.
I.
II.
III.
IV.
V.
VI.
Приведем таблицу основных неопределенных интегралов. (Отметим, что здесь, как и в дифференциальном исчислении, буква u может обозначать как независимую переменную (u=x), так и функцию от независимой переменной (u=u(x)).)
1. (n≠-1).
2. (a >0, a≠1).
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14. (a≠0).
15. (a≠0).
16. (|u| > |a|).
17. (|u| < |a|).
18.
19.
Интегралы 1 – 17 называют табличными.
Некоторые из приведенных выше формул таблицы интегралов, не имеющие аналога в таблице производных, проверяются дифференцированием их правых частей.
Замена переменной и интегрирование по частям в неопределенном интеграле.Интегрирование подстановкой (замена переменной). Пусть требуется вычислить интеграл , который не является табличным. Суть метода подстановки состоит в том, что в интеграле переменную х заменяют переменной t по формуле x=φ(t), откуда dx=φ’(t)dt.
Теорема. Пусть функция x=φ(t) определена и дифференцируема на некотором множестве Т и пусть Х – множество значений этой функции, на котором определена функция f(x). Тогда если на множестве Х функция f(x) имеет первообразную, то на множестве Т справедлива формула:
- (2)
Формула (1) называется формулой замены переменной в неопределенном интеграле.
Интегрирование по частям. Метод интегрирования по частям следует из формулы дифференциала произведения двух функций. Пусть u(x) и v(x) – две дифференцируемые функции переменной х. Тогда:
d(uv)=udv+vdu. – (3)
Интегрируя обе части равенства (3), получаем:
Но так как , то:
- (4)
Соотношение (4) называется формулой интегрирования по частям. С помощью этой формулы отыскание интеграла . Применять ее целесообразно, когда интеграл в правой части формулы (4) более прост для вычисления, нежели исходный.
В формуле (4) отсутствует произвольная постоянная С, так как в правой части этой формулы стоит неопределенный интеграл, содержащий произвольную постоянную.
Приведем некоторые часто встречающиеся типы интегралов, вычисляемых методом интегрирования по частям.
I. Интегралы вида , , (Pn(x) – многочлен степени n, k – некоторое число). Чтобы найти эти интегралы, достаточно положить u=Pn(x) и применить формулу (4) n раз.
II. Интегралы вида , , , , (Pn(x) – многочлен степени n относительно х). Их можно найти по частым, принимая за u функцию, являющуюся множителем при Pn(x).
III. Интегралы вида , (a, b – числа). Они вычисляются двукратным интегрированием по частям.
... они не требуют от учащихся дополнительных знаний по физике, а, следовательно, удовлетворяют как принципу научности, так и принципу доступности материала. 2.2. Изучение свойств определенного интеграла с помощью физических моделей При изучении интеграла существенным является отбор свойств, которые необходимо знать ученикам. Их должно быть достаточно для рассмотрения приложений интеграла и в ...
... между этими графиками равна b ò ((f(x)–g(x))dx a Функции f(x) и g(x) произвольные и неотрицательные b b b S=ò f(x)dx – ò g(x)dx = ò (f(x)–g(x))dx a a a b b S=ò f(x)dx + ò g(x)dx a a Применение интеграла I. В физике. Работа силы (A=FScosa, cosa ¹ 1) Если на частицу действует сила F, кинетическая ...
... выражением, – переменной интегрирования; отрезок называется промежутком интегрирования. Теорема 1. Если функция непрерывна на отрезке , то она интегрируема на этом отрезке. 2. Геометрический смысл определенного интеграла Пусть на отрезке задана непрерывная неотрицательная функция . Криволинейной трапецией называется фигура, ограниченная сверху графиком функции y = f(x), снизу – осью ...
... элементарной функцией, то первообразная от элементарной функции может оказаться и не представимой с помощью конечного числа элементарных функций. Из определения 2 следует: 1.Производная от неопределенного интеграла равна подынтегральной функции, т.е.если F′ (x)= f(x), то и (∫ f(x)dx)′= (F(x)+C)′=f(x). (4) Последнее равенство нужно понимать в том смысле, что ...
0 комментариев