6. Исследуем функцию на возрастание, убывание и экстремум. Для этого найдем производную функции.
Из получаем
, откуда
,
.
+ _ +
______________________________________ x
-3 11
Так как на интервалах и
производная положительна, т.е.
, то график функции на указанных интервалах возрастает. Так как на интервале
производная отрицательна, т.е.
, то на указанном интервале график функции убывает.
Так как при переходе через точки ,
производная функции меняет знаки и эти точки входят в область определения функции, то
,
- точки локального экстремума. Причем
точка локального минимума:
(так как при переходе через нее производная меняет знак с "+" на "-");
- точка локального максимума:
(так как при переходе через нее производная меняет знак с "-" на "+").
7. Исследуем график функции на выпуклость, вогнутость и определим точки перегиба. Для этого найдем вторую производную функции.
Очевидно, что в интервале вторая производная меньше нуля, т.е.
, и в этом интервале график функции является выпуклым вверх. В интервале
вторая производная больше нуля, т.е.
, и в этом интервале график функции является выпуклым вниз (вогнутым).
Несмотря на то, что при переходе через точку вторая производная меняет знак, она не является точкой перегиба, так как
не входит в область определения функции, т.е. функция в ней не определена. Таким образом, точек перегиба у графика функции нет.
Из получаем
, откуда
,
.
+ _ +
______________________________________ x
-3 11
Так как на интервалах и
производная положительна, т.е.
, то график функции на указанных интервалах возрастает. Так как на интервале
производная отрицательна, т.е.
, то на указанном интервале график функции убывает.
Так как при переходе через точки ,
производная функции меняет знаки и эти точки входят в область определения функции, то
,
- точки локального экстремума. Причем
точка локального минимума:
(так как при переходе через нее производная меняет знак с "+" на "-");
- точка локального максимума:
(так как при переходе через нее производная меняет знак с "-" на "+").
Часто возникает задача, обратная той, которая решалась в дифференциальном исчислении, а именно: дана функция , найти функцию
, такую, что
.
Функция называется первообразной для данной функции
на некотором промежутке Х, если для любого
выполняется равенство
.
Например, пусть , тогда за первообразную можно взять
, поскольку
.
В основе интегрального исчисления лежит теорема об общем виде первообразной: если – первообразная для функции
на промежутке Х, то все первообразные для функции
имеют вид
, где С – произвольная постоянная.
Выражение вида описывает все первообразные для функции
. Действительно, для любой постоянной С
.
Пусть наряду с данной первообразной функция
– также первообразная для
. Тогда должны выполняться равенства
,
откуда . Следовательно, разность этих первообразных будет тождественно равна константе
или
.
Действие нахождения первообразной называется интегрированием функции.
Доказанная теорема позволяет ввести основное понятие интегрального исчисления: если – первообразная для
, то совокупность функций
, где С – произвольная постоянная, называется неопределенным интегралом от функции
, который обозначается следующим образом
.
Геометрически неопределенный интеграл представляет собой семейство плоских кривых , называемых интегральными.
Для того, чтобы проверить, правильно ли выполнено интегрирование, надо взять производную от результата и убедиться, что получена подынтегральная функция . Как всякая обратная операция, интегрирование – более сложное действие, чем дифференцирование.
Приведем основные свойства неопределенного интеграла:
1. производная неопределенного интеграла равна подынтегральной функции
;
2. неопределенный интеграл от алгебраической суммы функций равен сумме интегралов от слагаемых функций
;
3. постоянный множитель можно выносить за знак неопределенного интеграла
.
Значения интегралов от основных элементарных функций получаются из формул дифференцирования этих функций. Приведем таблицу основных интегралов:
1) | 7) |
2) | 8) |
3) | 9) |
4) | 10) |
5) | 11) |
6) | 12) |
Интегралы, содержащиеся в этой таблице, называются табличными.
Пример. Найти неопределенный интеграл. Результат интегрирования проверить дифференцированием
Решение: Для нахождения неопределенных интегралов можно воспользоваться как методом замены переменной, так и методом внесения под знак дифференциала. Покажем оба метода.
1. Воспользуемся методом замены переменной. Введем новую переменную t по формуле . Тогда
или
. Тогда
После замены переменной воспользовались свойством неопределенного интеграла: постоянный множитель можно выносить за знак неопределенного интеграла, и так как
, то пришли к табличному интегралу
, где
и
.
2. Решим этот пример методом внесения под знак дифференциала. Замечая, что и то, что подынтегральное выражение можно представить в виде
,
внесем под знак дифференциала . Для этого выпишем дифференциал этой функции
. Тогда
После внесения под знак дифференциала функции пришли к табличному интегралу
, где
и
.
... дробей m и n; 2) если Z, то используется подстановка: a+bxn=ts, где s – знаменатель дроби 3) если Z, то применяется подстановка: ax-n+b=ts, где s – знаменатель дроби 9. Понятие определенного интеграла, его геометрический смысл. Определение. Если существует конечный передел интегральной суммы (8) - (8) при λ→0, не зависящий от способа разбиения ...
... элементарной функцией, то первообразная от элементарной функции может оказаться и не представимой с помощью конечного числа элементарных функций. Из определения 2 следует: 1.Производная от неопределенного интеграла равна подынтегральной функции, т.е.если F′ (x)= f(x), то и (∫ f(x)dx)′= (F(x)+C)′=f(x). (4) Последнее равенство нужно понимать в том смысле, что ...
... по алгебре и началам анализа, при подготовке к государственной итоговой аттестации, внешнему независимому оцениванию. Достаточно большое число задач раскрывают потенциальные возможности анализа бесконечно малых величин. 1. Производная и ее применение для решения прикладных задач 1.1 Исторические сведения Ряд задач дифференциального исчисления был решен еще в древности. Они встречались у ...
... в потенциальную, и обратно. Но на рубеже 17-18 веков никто не догадался, что именно законы сохранения составляют следующий по глубине слой природных закономерностей. Их понимание потребовало новой революции в математике: изучения природных симметрий с помощью теории групп. Ее создание и применение заняло весь 19 век и большую часть 20 века. Предугадать такое развитие математики Ньютон не мог - ...
0 комментариев