6. Исследуем функцию на возрастание, убывание и экстремум. Для этого найдем производную функции.
Из получаем , откуда , .
+ _ +
______________________________________ x
-3 11
Так как на интервалах и производная положительна, т.е. , то график функции на указанных интервалах возрастает. Так как на интервале производная отрицательна, т.е. , то на указанном интервале график функции убывает.
Так как при переходе через точки , производная функции меняет знаки и эти точки входят в область определения функции, то , - точки локального экстремума. Причем точка локального минимума: (так как при переходе через нее производная меняет знак с "+" на "-"); - точка локального максимума: (так как при переходе через нее производная меняет знак с "-" на "+").
7. Исследуем график функции на выпуклость, вогнутость и определим точки перегиба. Для этого найдем вторую производную функции.
Очевидно, что в интервале вторая производная меньше нуля, т.е. , и в этом интервале график функции является выпуклым вверх. В интервале вторая производная больше нуля, т.е. , и в этом интервале график функции является выпуклым вниз (вогнутым).
Несмотря на то, что при переходе через точку вторая производная меняет знак, она не является точкой перегиба, так как не входит в область определения функции, т.е. функция в ней не определена. Таким образом, точек перегиба у графика функции нет.
Из получаем , откуда , .
+ _ +
______________________________________ x
-3 11
Так как на интервалах и производная положительна, т.е. , то график функции на указанных интервалах возрастает. Так как на интервале производная отрицательна, т.е. , то на указанном интервале график функции убывает.
Так как при переходе через точки , производная функции меняет знаки и эти точки входят в область определения функции, то , - точки локального экстремума. Причем точка локального минимума: (так как при переходе через нее производная меняет знак с "+" на "-"); - точка локального максимума: (так как при переходе через нее производная меняет знак с "-" на "+").
4. Неопределенный интегралЧасто возникает задача, обратная той, которая решалась в дифференциальном исчислении, а именно: дана функция , найти функцию , такую, что .
Функция называется первообразной для данной функции на некотором промежутке Х, если для любого выполняется равенство
.
Например, пусть , тогда за первообразную можно взять , поскольку .
В основе интегрального исчисления лежит теорема об общем виде первообразной: если – первообразная для функции на промежутке Х, то все первообразные для функции имеют вид , где С – произвольная постоянная.
Выражение вида описывает все первообразные для функции . Действительно, для любой постоянной С
.
Пусть наряду с данной первообразной функция – также первообразная для . Тогда должны выполняться равенства
,
откуда . Следовательно, разность этих первообразных будет тождественно равна константе или .
Действие нахождения первообразной называется интегрированием функции.
Доказанная теорема позволяет ввести основное понятие интегрального исчисления: если – первообразная для , то совокупность функций , где С – произвольная постоянная, называется неопределенным интегралом от функции , который обозначается следующим образом
.
Геометрически неопределенный интеграл представляет собой семейство плоских кривых , называемых интегральными.
Для того, чтобы проверить, правильно ли выполнено интегрирование, надо взять производную от результата и убедиться, что получена подынтегральная функция . Как всякая обратная операция, интегрирование – более сложное действие, чем дифференцирование.
Приведем основные свойства неопределенного интеграла:
1. производная неопределенного интеграла равна подынтегральной функции
;
2. неопределенный интеграл от алгебраической суммы функций равен сумме интегралов от слагаемых функций
;
3. постоянный множитель можно выносить за знак неопределенного интеграла
.
Значения интегралов от основных элементарных функций получаются из формул дифференцирования этих функций. Приведем таблицу основных интегралов:
1) ; | 7) ; |
2) ; | 8) ; |
3) ; | 9) ; |
4) ; | 10) |
5) ; | 11) ; |
6) ; | 12) . |
Интегралы, содержащиеся в этой таблице, называются табличными.
Пример. Найти неопределенный интеграл. Результат интегрирования проверить дифференцированием
Решение: Для нахождения неопределенных интегралов можно воспользоваться как методом замены переменной, так и методом внесения под знак дифференциала. Покажем оба метода.
1. Воспользуемся методом замены переменной. Введем новую переменную t по формуле . Тогда или . Тогда
После замены переменной воспользовались свойством неопределенного интеграла: постоянный множитель можно выносить за знак неопределенного интеграла, и так как , то пришли к табличному интегралу , где и .
2. Решим этот пример методом внесения под знак дифференциала. Замечая, что и то, что подынтегральное выражение можно представить в виде
,
внесем под знак дифференциала . Для этого выпишем дифференциал этой функции . Тогда
После внесения под знак дифференциала функции пришли к табличному интегралу , где и .
... дробей m и n; 2) если Z, то используется подстановка: a+bxn=ts, где s – знаменатель дроби 3) если Z, то применяется подстановка: ax-n+b=ts, где s – знаменатель дроби 9. Понятие определенного интеграла, его геометрический смысл. Определение. Если существует конечный передел интегральной суммы (8) - (8) при λ→0, не зависящий от способа разбиения ...
... элементарной функцией, то первообразная от элементарной функции может оказаться и не представимой с помощью конечного числа элементарных функций. Из определения 2 следует: 1.Производная от неопределенного интеграла равна подынтегральной функции, т.е.если F′ (x)= f(x), то и (∫ f(x)dx)′= (F(x)+C)′=f(x). (4) Последнее равенство нужно понимать в том смысле, что ...
... по алгебре и началам анализа, при подготовке к государственной итоговой аттестации, внешнему независимому оцениванию. Достаточно большое число задач раскрывают потенциальные возможности анализа бесконечно малых величин. 1. Производная и ее применение для решения прикладных задач 1.1 Исторические сведения Ряд задач дифференциального исчисления был решен еще в древности. Они встречались у ...
... в потенциальную, и обратно. Но на рубеже 17-18 веков никто не догадался, что именно законы сохранения составляют следующий по глубине слой природных закономерностей. Их понимание потребовало новой революции в математике: изучения природных симметрий с помощью теории групп. Ее создание и применение заняло весь 19 век и большую часть 20 века. Предугадать такое развитие математики Ньютон не мог - ...
0 комментариев