Понятие корреляционно-регрессионного анализа и его использование в экономико-статистическом исследовании

Экономико-статистический анализ основных показателей деятельности внутреннего водного транспорта
163294
знака
22
таблицы
16
изображений

1.3 Понятие корреляционно-регрессионного анализа и его использование в экономико-статистическом исследовании

Исследуя природу, общество, экономику, необходимо считаться со взаимосвязью наблюдаемых процессов и явлений. При этом полнота описания так или иначе определяется количественными характеристиками причинно-следственных связей между ними. Оценка наиболее существенных из них, а также воздействия одних факторов на другие является одной из основных задач статистики.

Формы проявления взаимосвязей весьма разнообразны. В качестве двух самых общих их видов выделяют функциональную (полную) и корреляционную (неполную) связи. В первом случае величине факторного признака строго соответствует одно или несколько значений функции. Достаточно часто функциональная связь проявляется в физике, химии. В экономике примером может служить прямо пропорциональная зависимость между производительностью труда и увеличением производства продукции[20].

Корреляционная связь (которую также называют неполной, или статистической) проявляется в среднем, для массовых наблюдений, когда заданным значениям зависимой переменной соответствует некоторый ряд вероятных значений независимой переменной. Объяснение тому – сложность взаимосвязей между анализируемыми факторами, на взаимодействие которых влияют неучтенные случайные величины. Поэтому связь между признаками проявляется лишь в среднем, в массе случаев. При корреляционной связи каждому значению аргумента соответствуют случайно распределенные в некотором интервале значения функции.

Например, некоторое увеличение аргумента повлечет за собой лишь среднее увеличение или уменьшение (в зависимости от направленности) функции, тогда как конкретные значения у отдельных единиц наблюдения будут отличаться от среднего. Такие зависимости встречаются повсеместно. Например, в сельском хозяйстве это может быть связь между урожайностью и количеством внесенных удобрений. Очевидно, что последние участвуют в формировании урожая. Но для каждого конкретного поля, участка одно и то же количество внесенных удобрений вызовет разный прирост урожайности, так как во взаимодействии находится еще целый ряд факторов (погода, состояние почвы и др.), которые и формируют конечный результат. Однако в среднем такая связь наблюдается – увеличение массы внесенных удобрений ведет к росту урожайности[21].

По направлению связи бывают прямыми, когда зависимая переменная растет с увеличением факторного признака, и обратными, при которых рост последнего сопровождается уменьшением функции. Такие связи также можно назвать соответственно положительными и отрицательными.

Относительно своей аналитической формы связи бывают линейными и нелинейными. В первом случае между признаками в среднем проявляются линейные соотношения. Нелинейная взаимосвязь выражается нелинейной функцией, а переменные связаны между собой в среднем нелинейно.

Существует еще одна достаточно важная характеристика связей с точки зрения взаимодействующих факторов. Если характеризуется связь двух признаков, то ее принято называть парной. Если изучаются более чем две переменные – множественной.

Указанные выше классификационные признаки наиболее часто встречаются в статистическом анализе. Но кроме перечисленных различают также непосредственные, косвенные и ложные связи. Собственно, суть каждой из них очевидна из названия. В первом случае факторы взаимодействуют между собой непосредственно. Для косвенной связи характерно участие какой-то третьей переменной, которая опосредует связь между изучаемыми признаками. Ложная связь – это связь, установленная формально и, как правило, подтвержденная только количественными оценками. Она не имеет под собой качественной основы или же бессмысленна.

По силе различаются слабые и сильные связи. Эта формальная характеристика выражается конкретными величинами и интерпретируется в соответствии с общепринятыми критериями силы связи для конкретных показателей.

В наиболее общем виде задача статистики в области изучения взаимосвязей состоит в количественной оценке их наличия и направления, а также характеристике силы и формы влияния одних факторов на другие. Для ее решения применяются две группы методов, одна из которых включает в себя методы корреляционного анализа, а другая – регрессионный анализ. В то же время ряд исследователей объединяет эти методы в корреляционно-регрессионный анализ, что имеет под собой некоторые основания: наличие целого ряда общих вычислительных процедур, взаимодополнения при интерпретации результатов и др.[22]

Поэтому в данном контексте можно говорить о корреляционном анализе в широком смысле – когда всесторонне характеризуется взаимосвязь. В то же время выделяют корреляционный анализ в узком смысле – когда исследуется сила связи – и регрессионный анализ, в ходе которого оцениваются ее форма и воздействие одних факторов на другие.

Задачи собственно корреляционного анализа сводятся к измерению тесноты связи между варьирующими признаками, определению неизвестных причинных связей и оценке факторов оказывающих наибольшее влияние на результативный признак.

Задачи регрессионного анализа лежат в сфере установления формы зависимости, определения функции регрессии, использования уравнения для оценки неизвестных значении зависимой переменной.

Решение названных задач опирается на соответствующие приемы, алгоритмы, показатели, применение которых дает основание говорить о статистическом изучении взаимосвязей.

Следует заметить, что традиционные методы корреляции и регрессии широко представлены в разного рода статистических пакетах программ для ЭВМ. Исследователю остается только правильно подготовить информацию, выбрать удовлетворяющий требованиям анализа пакет программ и быть готовым к интерпретации полученных результатов. Алгоритмов вычисления параметров связи существует множество, и в настоящее время вряд ли целесообразно проводить такой сложный вид анализа вручную. Вычислительные процедуры представляют самостоятельный интерес, но знание принципов изучения взаимосвязей, возможностей и ограничений тех или иных методов интерпретации результатов является обязательным условием исследования[23].

Методы оценки тесноты связи подразделяются на корреляционные (параметрические) и непараметрические. Параметрические методы основаны на использовании, как правило, оценок нормального распределения и применяются в случаях, когда изучаемая совокупность состоит из величин, которые подчиняются закону нормального распределения. На практике это положение чаще всего принимается априори. Собственно, эти методы – параметрические – и принято называть корреляционными.

Непараметрические методы не накладывают ограничений на закон распределения изучаемых величин. Их преимуществом является и простота вычислений.

Простейшим приемом выявления связи между двумя признаками является построение корреляционной таблицы:

 \ Y \ X \

Y1

Y2

 ...

Yz

Итого

Yi

X1

f11

12 ...

f1z

http://planovik.ru/invest/m81/img/08-f01.gif

http://planovik.ru/invest/m81/img/08-f02.gif

X1

f21

22 ...

f2z

http://planovik.ru/invest/m81/img/08-f03.gif

http://planovik.ru/invest/m81/img/08-f04.gif

... ... ... ... ... ... ...

Xr

fk1

k2 ...

fkz

http://planovik.ru/invest/m81/img/08-f05.gif

http://planovik.ru/invest/m81/img/08-f06.gif

Итого

http://planovik.ru/invest/m81/img/08-f07.gif

http://planovik.ru/invest/m81/img/08-f08.gif

...

http://planovik.ru/invest/m81/img/08-f09.gif

n

http://planovik.ru/invest/m81/img/08-f10.gif

http://planovik.ru/invest/m81/img/08-f11.gif

http://planovik.ru/invest/m81/img/08-f12.gif

http://planovik.ru/invest/m81/img/08-f13.gif

...

http://planovik.ru/invest/m81/img/08-f14.gif

http://planovik.ru/invest/m81/img/08-f15.gif

-

В основу группировки положены два изучаемых во взаимосвязи признака – Х и У. Частоты fij показывают количество соответствующих сочетаний Х и У. Если fij расположены в таблице беспорядочно, можно говорить об отсутствии связи между переменными. В случае образования какого-либо характерного сочетания fij допустимо утверждать о связи между Х и У. При этом, если fij концентрируется около одной из двух диагоналей, имеет место прямая или обратная линейная связь[24].

Наглядным изображением корреляционной таблице служит корреляционное поле. Оно представляет собой график, где на оси абсцисс откладывают значения Х, по оси ординат – У, а точками показывается сочетание Х и У. По расположению точек, их концентрации в определенном направлении можно судить о наличии связи.

В итогах корреляционной таблицы по строкам и столбцам приводятся два распределения – одно по X, другое по У. Рассчитаем для каждого Хi среднее значение У, т.е. http://planovik.ru/invest/m81/img/08-f16.gif, как

http://planovik.ru/invest/m81/img/08-f17.gif

Последовательность точек (Xi, http://planovik.ru/invest/m81/img/08-f18.gif) дает график, который иллюстрирует зависимость среднего значения результативного признака У от факторного X, – эмпирическую линию регрессии, наглядно показывающую, как изменяется У по мере изменения X.

По существу, и корреляционная таблица, и корреляционное поле, и эмпирическая линия регрессии предварительно уже характеризуют взаимосвязь, когда выбраны факторный и результативный признаки и требуется сформулировать предположения о форме и направленности связи. В то же время количественная оценка тесноты связи требует дополнительных расчетов[25].

Практически для количественной оценки тесноты связи широко используют линейный коэффициент корреляции. Иногда его называют просто коэффициентом корреляции. Если заданы значения переменных Х и У, то он вычисляется по формуле

http://planovik.ru/invest/m81/img/08-f19.gif

Можно использовать и другие формулы, но результат должен быть одинаковым для всех вариантов расчета.

Коэффициент корреляции принимает значения в интервале от -1 до + 1. Принято считать, что если |r| < 0,30, то связь слабая; при |r| = (0,3÷0,7) – средняя; при |r| > 0,70 – сильная, или тесная. Когда |r| = 1 – связь функциональная. Если же r принимает значение около 0, то это дает основание говорить об отсутствии линейной связи между У и X. Однако в этом случае возможно нелинейное взаимодействие. что требует дополнительной проверки и других измерителей, рассматриваемых ниже.

Для характеристики влияния изменений Х на вариацию У служат методы регрессионного анализа. В случае парной линейной зависимости строится регрессионная модель


http://planovik.ru/invest/m81/img/08-f20.gif

где n – число наблюдений; а0, а1 – неизвестные параметры уравнения; ei – ошибка случайной переменной У.

Уравнение регрессии записывается как

http://planovik.ru/invest/m81/img/08-f21.gif

где Уiтеор – рассчитанное выравненное значение результативного признака после подстановки в уравнение X.

Параметры а0 и а1 оцениваются с помощью процедур, наибольшее распространение из которых получил метод наименьших квадратов. Его суть заключается в том, что наилучшие оценки ag и а, получают, когда

http://planovik.ru/invest/m81/img/08-f22.gif

т.е. сумма квадратов отклонений эмпирических значений зависимой переменной от вычисленных по уравнению регрессии должна быть минимальной. Сумма квадратов отклонений является функцией параметров а0 и а1. Ее минимизация осуществляется решением системы уравнений[26]

http://planovik.ru/invest/m81/img/08-f23.gif

Можно воспользоваться и другими формулами, вытекающими из метода наименьших квадратов, например:


http://planovik.ru/invest/m81/img/08-f24.gif

Аппарат линейной регрессии достаточно хорошо разработан и, как правило, имеется в наборе стандартных программ оценки взаимосвязи для ЭВМ. Важен смысл параметров: а1 – это коэффициент регрессии, характеризующий влияние, которое оказывает изменение Х на У. Он показывает, на сколько единиц в среднем изменится У при изменении Х на одну единицу. Если а, больше 0. то наблюдается положительная связь. Если а имеет отрицательное значение, то увеличение Х на единицу влечет за собой уменьшение У в среднем на а1. Параметр а1 обладает размерностью отношения У к X.

Параметр a0 – это постоянная величина в уравнении регрессии. На наш взгляд, экономического смысла он не имеет, но в ряде случаев его интерпретируют как начальное значение У.

Например, по данным о стоимости оборудования Х и производительности труда У методом наименьших квадратов получено уравнение

У = -12,14 + 2,08Х.

Коэффициент а, означает, что увеличение стоимости оборудования на 1 млн руб. ведет в среднем к росту производительности труда на 2.08 тыс. руб.

Значение функции У = a0 + а1Х называется расчетным значением и на графике образует теоретическую линию регрессии.

Смысл теоретической регрессии в том, что это оценка среднего значения переменной У для заданного значения X.

Парная корреляция или парная регрессия могут рассматриваться как частный случай отражения связи некоторой зависимой переменной, с одной стороны, и одной из множества независимых переменных – с другой. Когда же требуется охарактеризовать связь всего указанного множества независимых переменных с результативным признаком, говорят о множественной корреляции или множественной регрессии[27].



Информация о работе «Экономико-статистический анализ основных показателей деятельности внутреннего водного транспорта»
Раздел: Транспорт
Количество знаков с пробелами: 163294
Количество таблиц: 22
Количество изображений: 16

Похожие работы

Скачать
38499
15
2

... ряда динамики, а n — число лет (уровней ряда динамики) в изучаемом отрезке времени (без базисного).[4] Глава 2. Статистический анализ деятельности грузового транспорта общего пользования   2.1 Анализ перевозок груза транспорта общего пользования.   Одним из основных показателей работы грузового транспорта является количество перевезенного груза. В таблице 1 представлены интервальные ряды ...

Скачать
69617
5
2

... перечня программных мероприятий федеральной целевой программы "Модернизация транспортной системы России (2002 - 2010 годы)". Раздел 2. Влияние логистики на водный транспорт и усовершенствование предприятий с ее помощью Влияние логистики на водный транспорт России Вхождение России в мировую экономическую систему, расширение ее связей со странами СНГ, Западной и Восточной Европы, а также ...

Скачать
122533
10
2

... к среднегодовой стоимости основных и нормируемых оборотных фондов. Различают два вида рентабельности: рассчитанную на основе балансовой (общей) прибыли и на основе чистой прибыли. 2. Организационно-экономическая характеристика КСП имени Дзержинского Новоайдарского района Луганской области Результаты работы сельскохозяйственных предприятий существенно зависят от условий производства. Поэтому ...

Скачать
103842
13
5

... Повысить это влияние можно за счёт увеличения доли активной части и доли действующего оборудования в общем объёме основных производственных фондов. Глава 4. РАЗРАБОТКА ПРЕДЛОЖЕНИЙ ПО ПОВЫШЕНИЮ ЭФФЕКТИВНОСТИ ИСПОЛЬЗОВАНИЯ ОСНОВНЫХ ПРОИЗВОДСТВЕННЫХ ФОНДОВ ОАО «СЕВЕРНЫЙ ПОРТ» Одной из наиболее важных задач развития транспорта является обеспечение производства, прежде всего за счет повышения его ...

0 комментариев


Наверх