1. Комплексное число задано в алгебраической форме.
z=x+iy, то zn находим по формуле бинома Ньютона:
zn=(x+iy)n.
- число сочетаний из n элементов по m (число способов, сколькими можно взять n элементов из m).
; n!=1*2*…*n; 0!=1; .
Применяем для комплексного числа.
В полученном выражении нужно заменить степени i их значениями:
i0=1 Отсюда, в общем случае получаем: i4k=1
i1=i i4k+1=i
i2=-1 i4k+2=-1
i3=-i i4k+3=-i
i4=1
i5=i
i6=-1
Пример.
i31= i28 i3=-i
i1063= i1062 i=i
2. Если комплексное число задано в тригонометрической форме.
z=r(cos+isin), то
- формула Муавра.
Здесь n может быть как “+” так и “-” (целым).
3. Если комплексное число задано в показательной форме:
Извлечение корня
Рассмотрим уравнение: .
Его решением будет корень n–ой степени из комплексного числа z: .
Корень n–ой степени из комплексного числа z имеет ровно n решений (значений). Корень из действующего числа n-ой степени имеет только одно решение. В комплексных – n решений.
Если комплексное число задано в тригонометрической форме:
z=r(cos+isin), то корень n-ой степени от z находится по формуле:
, где к=0,1…n-1.
РЯДЫ
Числовые ряды
Пусть переменная а принимает последовательно значения а1,а2,а3,…,аn. Такое перенумерованное множество чисел называется последовательностью. Она бесконечна.
Числовым рядом называется выражение а1+а2+а3+…+аn+…= . Числа а1,а2,а3,…,аn – члены ряда.
Например.
а1 – первый член ряда.
аn – n-ый или общий член ряда.
Ряд считается заданным, если известен n-ый (общий член ряда).
Числовой ряд имеет бесконечное число членов.
Числители – арифметическая прогрессия (1,3,5,7…).
n-ый член находится по формуле
аn=а1+d(n-1); d=аn-аn-1.
Знаменатель – геометрическая прогрессия.
bn=b1qn-1; .
Рассмотрим сумму первых n членов ряда и обозначим ее Sn.
Sn=а1+а2+…+аn.
Sn – n-ая частичная сумма ряда.
Рассмотрим предел:
S - сумма ряда.
Ряда сходящийся, если этот предел конечен (конечный предел S существует).
Ряд расходящийся, если этот предел бесконечен.
В дальнейшем наша задача заключается в следующем: установить какой ряд.
Одним из простейших, но часто встречающихся рядов является геометрическая прогрессия.
, C=const.
Геометрическая прогрессия является сходящимся рядом, если , и расходящимся, если .
Также встречается гармонический ряд (ряд ). Этот ряд расходящийся.
Свойства числовых рядов
1. Если сходится а1+а2+а3+…+аn+…=, то сходится и ряд аm+1+аm+2+аm+3+…, полученный из данного ряда отбрасыванием первых m членов. Этот полученный ряд называется m-ым остатком ряда. И, наоборот: из сходимости m-го остатка ряда вытекает сходимость данного ряда. Т.е. сходимость и расходимость ряда не нарушается, если прибавить или отбросить конечное число его членов.
2. Если ряд а1+а2+а3+… сходится и его сумма равна S, то ряд Са1+Са2+…, где С= так же сходится и его сумма равна СS.
3. Если ряды а1+а2+… и b1+b2+… сходятся и их суммы равны соответственно S1 и S2, то ряды (а1+b1)+(а2+b2)+(а3+b3)+… и (а1-b1)+(а2-b2)+(а3-b3)+… также сходятся. Их суммы соответственно равны S1+S2 и S1-S2.
... некая иерархическая структура. Третья идея ССА широкое использование графических нотаций, что облегчает понимание сложных систем. В результате можно дать следующее определение ССА: структурным системным анализом называется метод исследования, проектирования и описания сложных систем в виде иерархии "черных ящиков" с помощью графических средств. Другие принципы ССА Методология ССА строится ...
... педагогически значимого подмножества, на основе которого можно было бы провести углубленное изучение понятия экстремума в его взаимосвязях с другими понятиями математического анализа. Во-вторых, объективно получается, что традиционные коллекции упражнений созданы не столько для изучения понятия экстремума, сколько для иллюстрации методов дифференциального исчисления для его отыскания. Этого вполне ...
... Итак, работа переменной силы , величина которой есть непрерывная функция F = F(x), действующая на отрезке [a; b], равна определенному интегралу от величины F(x) силы, взятому по отрезу [a; b]. В этом состоит механический смысл определенного интеграла. Аналогично можно показать, что путь S, пройденный точкой за промежуток времени от t = a до t = b, равен определенному интегралу от скорости v(t): ...
... «Математических лекциях о методе интеграла»[9]. Здесь дан способ взятия большинства элементарных интегралов и указаны методы решения многих дифференциальных уравнений первого порядка. 2 Вклад Л.Эйлера в развитие математического анализа Леонард Эйлер (Euler, Leonhard) (1707–1783) входит в первую пятерку величайших математиков всех времен и народов. Родился в Базеле (Швейцария) 15 апреля ...
0 комментариев