1. Дифференциальное уравнение- уравнение , связывающее независимую переменную х, искомую функцию f(x) и ее производные .

Символически дифференциальное уравнение выглядит:

F(x,y,y’,y’’…,y(n))=0 или .

 

2. Порядком дифференциального уравнения называется порядок наивысшей производной, входящей в уравнение:

Пример.

F(x,y,y’)=0- дифференциальное уравнение первого порядка.

F(x,y,y’,y’’)=0- дифференциальное уравнение второго порядка.

3. Решением дифференциального уравнения называется всякая функция , которая при подстановке в уравнение, обращает его в верное тождество.

Для того чтобы решить дифференциальное уравнение надо его проинтегрировать.

Пример.

Дифференциальное уравнение первого порядка.

Общее и частное решения.

F(x,y,y’)=0

Это уравнение можно привести к виду y’=f(x,y).

Интегрируем уравнение.

После вычисления возникает постоянная С. Поэтому решение фактически зависит не только от х, но и от С, т.е. y=f(x,C). Придавая С различные значения, мы получаем множество различных решений дифференциального уравнения. Эти решения (y=f(x,C)) называются общим решением дифференциального уравнения.

Придавая С различные значения получаем различные решения дифференциального уравнения. Так как С имеет бесконечное множество значений, то и решений будет бесконечное множество (которые отличаются друг от друга путем сдвига на несколько единиц).

Геометрически общее решение представляет собой семейство кривых на координатной плоскости ХОУ.

Частное решение.

Пусть в дифференциальном уравнении заданы дополнительные условия, что при х=х0 функция принимает значение у=у0. Это дополнительное условие называется начальным условием и записывается: а). у=у0 при х=х0; б). ; в). у(х0)=у0.

Геометрически начальное условие означает некоторую точку (х0,у0) на плоскости ХОУ.

Подставляя  в начальное условие , находим вполне определенные значения постоянной С. Тогда  является частным решением уравнения.

Геометрически частное решение обозначает: начальное условие задает некоторую точку на плоскости и из семейства кривых (общее решение) выбирается та единственная кривая, которая проходит через эту точку.

Теорема существования и единственности решения дифференциального уравнения (теорема Коши).

Если в дифференциальном уравнении y=f(x,y) функция f(x,y) и ее частная производная  определены и непрерывны в некоторой области Д на плоскости ХОУ, то какова бы ни была внутренняя точка (х0,у0) этой области, данное уравнение имеет единственное решение , удовлетворяющее начальному условию у=у0 при х=х0.

Геометрически смысл заключается в следующем: каждой точке (х0,у0) области Д соответствует только одна интегральная кривая, проходящая через эту точку (каждой точке соответствует только одно частное решение).

Замечание. “Найти частное решение”=“Решить задачу Коши”.

Существует 4 вида дифференциальных уравнений первого порядка.

1. Дифференциальные уравнения первого порядка с разделяющимися переменными.

Дифференциальные уравнения первого порядка в общем виде можно записать либо через производные F(x,y,y’)=0, либо через дифференциалы

.

Дифференциальное уравнение- уравнение с разделяющимися переменными, если его можно представить в виде:

- - через производную.

- - через дифференциал.

В этих уравнениях в произведениях стоят функции, каждая из которых зависит от одной переменной (х или у). Т.е. уравнение будет уравнением с разделяющимися переменными, если его можно преобразовать так, чтобы в одной его части была только одна переменная, а в другой – только другая.

Замечание. При решении дифференциальное уравнение ответу можно придать различную форму в зависимости от того, как записана произвольная постоянная С.

Решение.

-

; -интегрируем и получаем решение.


-

;

 

Однородные дифференциальные уравнения первого порядка

Функция f(x,y) называется однородной функцией n–го измерения, если при любом  выполняется условие: .

Дифференциальное уравнение y’=f(x,y) есть однородное, если функция f(x,y) является однородной функцией нулевого измерения.

Дифференциальное уравнение P(x,y)dx+Q(x,y)dy=0 однородное, если P(x,y) и Q(x,y) являются однородными функциями одного и того же измерения.

P(x,y)dx=-Q(x,y)dy;

Однородное уравнение всегда можно привести к виду  и с помощью замены  однородное уравнение всегда приводится к уравнению с разделяющимися переменными (; y=xt; y’=t+xt’).

 

Линейные дифференциальные уравнения

 

ЛДУ- уравнения вида y’+P(x)y=Q(x)– первого порядка относительно у и у’.

Для решения ЛДУ применяем замену: y=UV, тогда y’=U’V+UV’

U’V+UV’+P(x)UV=Q(x)

V(U’+P(x)U)+UV’=Q(x)


Далее U’+P(x)U=0, получаем два уровнения с разделяющимися переменными:

1). U’+P(x)U=0 находим U.  2). UV’=Q(x) находим V. . С ставится только при вычислении второго уравнения.

Замечание. Выражение, стоящее в скобках, можно прировнять к нулю, т.к. одну из функций можно взять произвольной, другую – определяем на основании ЛДУ.

 

Уравнения Бернулли

 

УБ- дифференциальные уравнения вида y’+P(x)y=Q(x)*yn, где

- т.к. при этих значениях уравнение будет линейным.

УБ решаются так же, как и линейные.

 

Дифференциальные уравнения второго порядка

Дифференциальные уравнения второго порядка в общем виде записываются: F(x,y,y’,y’’)=0

Как и в случае дифференциальных уравнений первого порядка для решения дифференциальных уравнений второго порядка существуют общее и частное решения. Но, если для дифференциальных уравнений первого порядка решение зависело от одной константы С, то для дифференциальных уравнений второго порядка решение зависит от двух постоянных: - общее решение.

Если заданы начальные условия (у=у0, у=у0 при х=х0), то получаем частное решение, удовлетворяющее этим начальным условиям.

Начальные условия так же могут задаваться в виде:

у=у0 при х=х0; у=у1 при х=х1.


Три случая понижения порядка

 

1. Случай непосредственного интегрирования

F(x,y”)=0

y’’=f(x)- решение этого уравнения находится путем двукратного интегрирования.

; ; ;

 


Информация о работе «Основные понятия математического анализа»
Раздел: Математика
Количество знаков с пробелами: 23337
Количество таблиц: 0
Количество изображений: 1

Похожие работы

Скачать
18316
0
0

... некая иерархическая структура. Третья идея ССА широкое использование графических нотаций, что облегчает понимание сложных систем. В результате можно дать следующее определение ССА: структурным системным анализом называется метод исследования, проектирования и описания сложных систем в виде иерархии "черных ящиков" с помощью графических средств. Другие принципы ССА Методология ССА строится ...

Скачать
28459
2
2

... педагогически значимого подмножества, на основе которого можно было бы провести углубленное изучение понятия экстремума в его взаимосвязях с другими понятиями математического анализа. Во-вторых, объективно получается, что традиционные коллекции упражнений созданы не столько для изучения понятия экстремума, сколько для иллюстрации методов дифференциального исчисления для его отыскания. Этого вполне ...

Скачать
18290
1
4

... Итак, работа переменной силы , величина которой есть непрерывная функция F = F(x), действующая на отрезке [a; b], равна определенному интегралу от величины F(x) силы, взятому по отрезу [a; b]. В этом состоит механический смысл определенного интеграла. Аналогично можно показать, что путь S, пройденный точкой за промежуток времени от t = a до t = b, равен определенному интегралу от скорости v(t): ...

Скачать
31365
0
0

... «Математических лекциях о методе интеграла»[9]. Здесь дан способ взятия большинства элементарных интегралов и указаны методы решения многих дифференциальных уравнений первого порядка.   2 Вклад Л.Эйлера в развитие математического анализа   Леонард Эйлер (Euler, Leonhard) (1707–1783) входит в первую пятерку величайших математиков всех времен и народов. Родился в Базеле (Швейцария) 15 апреля ...

0 комментариев


Наверх