1.3 Патентное исследование

Известны устройства для защиты двигателя от перегрузок, использующие тепловую модель двигателя. Так, например, выдан патент №2192698 на устройство для защиты двигателей. Принципиальная схема устройства приведена на рисунке 1.5.

Это устройство содержит датчик (3) тока для подключения в цепь питания двигателя, квадратор (5), входы которого подключены к выходам датчика тока, тепловой имитатор (6) электродвигателя (тепловую модель), входы которого подключены к выходам квадратора, компаратор (7) и исполнительное реле (8). Тепловой имитатор представляет собой тепловую модель первого порядка, то есть двигатель представлен как однородное тело.

Рисунок 1.5 – Устройство для защиты электродвигателей


В патенте №2192699 описывается устройство для защиты электродвигателя. Принципиальная схема устройства приведена на рисунке 1.6.

Это устройство содержит трансформаторы тока (1, 2, 3), выпрямитель (4), блок (5) контроля перегрузок, блок формирования времятоковой характеристики, состоящий из теплового имитатора (6) электродвигателя, компаратора (7), и исполнительного реле (8). Здесь так же используется тепловая модель первого порядка.

Рисунок 1.6 – Устройство для защиты электродвигателя


2. Выбор и определение параметров тепловой модели асинхронного двигателя

2.1 Выбор тепловой модели

Задача выбора АД по нагреву не требует высокой точности определения температуры меди, которую обеспечивает ЭТС с большим количеством узлов. Поэтому за основу принята модель, представляющая двигатель как два коаксиальных цилиндра [7,8] (см. рисунок 1.4). Основные принципы, на которых базируется модель, рассмотрены в разделе 1.

Данная модель более точно моделирует нагрев двигателя по сравнению с представлением двигателя однородным телом нагрева. В то же время имеется возможность аналитического определения коэффициентов, присутствующих в уравнении (1.20), с достаточной для поставленной задачи точностью.

Перегруппировав неизвестные в уравнениях системы (1.20) получим систему вида:

 (2.1)

Системе уравнений (2.1) соответствует ЭТС, изображенная на рисунке 2.1.

В указанной схеме тепловые сопротивления определяются как величины, обратные соответствующим коэффициентам теплоотдачи.

Таким образом, коэффициенты А1, А12 и А2 возможно определить, приведя эквивалентными преобразованиями тепловую схему замещения асинхронного двигателя к тепловой схеме двухцилиндрической модели.


Рисунок 2.1 – ЭТС, соответствующая двухцилиндрической модели двигателя

2.2 Определение коэффициентов теплоотдачи

2.2.1 Аналитическое определение А1, А2, А12

Для определения коэффициентов теплоотдачи рассмотрим упрощенную эквивалентную тепловую схему замещения асинхронного двигателя закрытого исполнения [4,9], (см. рисунок 1.3). Коэффициенты теплоотдачи считаем постоянными, то есть одинаковыми в переходном и установившемся режимах. Следовательно, для их определения можно рассматривать схему (см. рисунок. 1.3) в установившемся режиме (рисунок 2.2), что значительно упрощает решение. Так же введем допущение, что двигатель имеет независимое принудительное охлаждение, то есть коэффициенты теплоотдачи одинаковы при выключенном и включенном двигателе.

Рисунок 2.2 – Приведенная ЭТС закрытого обдуваемого двигателя для стационарного режима


Система уравнений для этой схемы имеет вид [2]:

 (2.2)

Так как в схеме (рисунок 2.2) рассмотрены лобовая и пазовая части обмотки в отдельности, а необходимо знать среднюю температуру обмотки, то по правилам эквивалентных преобразований [4], объединим эти источники в один (рисунок 2.3).

Рисунок 2.3 – Объединение лобовой и пазовой частей обмотки

После преобразования (2.3) схема имеет 5 узлов (рисунок 2.4), то есть схеме соответствует система уравнений 5-го порядка.

Объединим сопротивления Ra1 с R'м,в и Ra2 с R'м,с:

 (2.4)


Рисунок 2.4 – ЭТС закрытого обдуваемого двигателя с объединенными пазовой и лобовой частями обмотки

В итоге имеем схему, изображенную на рисунке 2.5 которой соответствует система уравнений (2.5).

Рисунок 2.5 – Окончательный вид преобразованной ЭТС закрытого обдуваемого двигателя

 

 (2.5)

Систему уравнений (2.5) необходимо свести к системе уравнений второго порядка, в которой неизвестными выступили бы Δθм и Δθс,ст. Для сокращения записи выражений введем замену:


;

;

.

;

;

;

;

(2.6)

;

;

;

;

Подставив в (2.5) выражения (2.6), получим:

 (2.7)

Пренебрежем механическими и добавочными потерями (Pв,вт=0), так как их величина мала по сравнению с основными потерями (потери в меди, стали, роторе) и, как следствие, они незначительно влияют на превышение температуры меди и стали.

Для того чтобы понизить порядок системы (2.7) выразим из последних трех уравнений Δθрот, Δθв,вт и Δθк через Δθм и Δθс,ст:

; (2.8)

; (2.9)

. (2.10)


Подставив выражение (2.9) в первое уравнение системы (2.7) получим:

. (2.11)

Для соответствия выражения (2.11) первому уравнению системы (1.20) добавим и вычтем из (2.11) . В результате простых алгебраических преобразований получим уравнение соответствующее первому уравнению системы (1.20):

. (2.12)

Аналогично поступаем со вторым уравнением системы (2.7). Подставив в него выражения (2.8) и (2.10) получим:

. (2.13)

Для соответствия выражения (2.13) второму уравнению системы (1.20) добавим и вычтем из (2.13) . В результате простых алгебраических преобразований получим уравнение соответствующее второму уравнению системы (1.20):


. (2.14)

Обозначим:

; (2.15)

; (2.16)

; (2.17)

; (2.18)

. (2.19)

Ниже будет показано, что потери в роторе Ррот пропорциональны току статора, что позволяет объединить Рм и Ррот (2.18), Рст и Ррот (2.19).

Выражения (2.15) – (2.19) позволяют определить коэффициенты теплоотдачи и потери, необходимые для построения тепловой модели асинхронного двигателя, используя тепловые сопротивления эквивалентной тепловой схемы двигателя.


Информация о работе «Моделирование нагрева асинхронного двигателя»
Раздел: Промышленность, производство
Количество знаков с пробелами: 85971
Количество таблиц: 4
Количество изображений: 45

Похожие работы

Скачать
102925
0
29

... b = a(t2) + g(t2) = w0× t + g 2. ТЕХНИЧЕСКОЕ ЗАДАНИЕ 2.1 Наименование и область применения Разрабатываемое устройство называется: автоматическая система управления асинхронным двигателем. Область применения разрабатываемого устройства не ограничивается горнодобывающей промышленностью и может использоваться на любых предприятиях для управления машинами с асинхронным приводом. 2.2 Основание для ...

Скачать
140823
20
31

... . Целью дипломного проекта является разработка и исследование автоматической системы регулирования (АСР) асинхронного высоковольтного электропривода на базе автономного инвертора тока с трехфазным однообмоточным двигателем с детальной разработкой программы высокого уровня при различных законах управления. В ходе конкретизации из поставленной цели выделены следующие задачи. Провести анализ ...

Скачать
185428
38
10

... о выборе лучшего варианта привода принимается на основе сопоставления приведенных затрат на одинаковый объем выпускаемой продукции. В данном проекте необходимо обеспечить регулирование продолжительности времени выпечки с коррекцией по температуре во второй зоне пекарной камеры. При этом необходимо учитывать, что производительность печи при замене системы привода меняться не должна, а также ...

Скачать
88328
0
2

за счет снижения газоудерживающей способности теста. Процесс уплотнения поверхностного слоя тестовой заготовки приводит к ускоренному повышению температуры тестовой заготовки, т.е. кривая скорости изменения температуры поверхностного слоя начинает расти. Рост кривой продолжается до точки “г”, после прохождения которой начинается процесс интенсивного газовыделения, связанного с резким снижением ...

0 комментариев


Наверх