Федеральное агентство по образованию
Всероссийский заочный финансово-экономический институт
Кафедра экономико-математических методов и моделей
КОНТРОЛЬНАЯ РАБОТА
по дисциплине «Эконометрика»
Вариант № 3
Исполнитель: Глушакова Т.И.
Специальность: Финансы и кредит
Курс: 3
Группа: 6
№ зачетной книжки: 07ффд41853
Руководитель: Денисов В.П.
г. Омск 2009г.
Задачи
По предприятиям легкой промышленности региона получена информация, характеризующая зависимость объема выпуска продукции (Y, млн. руб.) от объема капиталовложений (X, млн. руб.). Требуется:
1. Найти параметры уравнения линейной регрессии, дать экономическую интерпретацию коэффициента регрессии.
- уравнение линейной регрессии, где - параметры уравнения.
, где , - средние значения признаков.
, где n – число наблюдений.
Представим вычисления в таблице 1:
Таблица 1. Промежуточные расчеты.
t | xi | yi | yi * xi | xi*xi |
1 | 38 | 69 | 2622 | 1444 |
2 | 28 | 52 | 1456 | 784 |
3 | 27 | 46 | 1242 | 729 |
4 | 37 | 63 | 2331 | 1369 |
5 | 46 | 73 | 3358 | 2116 |
6 | 27 | 48 | 1296 | 729 |
7 | 41 | 67 | 2747 | 1681 |
8 | 39 | 62 | 2418 | 1521 |
9 | 28 | 47 | 1316 | 784 |
10 | 44 | 67 | 2948 | 1936 |
средн. знач. | 35,5 | 59,4 | ||
2108,7 | ||||
1260,25 | ||||
21734 | ||||
13093 | ||||
n | 10 | |||
1,319 | ||||
12,573 |
Таким образом, уравнение линейной регрессии имеет вид:
Коэффициент регрессии равен 1,319>0, значит связь между объемом капиталовложений и выпуском продукции прямая, увеличение объема капиталовложений на 1 млн. руб. ведет к увеличению объема выпуска продукции в среднем на 1,319 млн. руб. Это свидетельствует об эффективности работы предприятий.
2. Вычислить остатки; найти остаточную сумму квадратов; оценить дисперсию остатков ; построить график остатков.
Вычислим прогнозное значение Y по формуле:
Остатки вычисляются по формуле:
.
Представим промежуточные вычисления в таблице 2.
Таблица 2. Вычисление остатков.
69 | 62,695 | 6,305 | 39,75303 |
52 | 49,505 | 2,495 | 6,225025 |
46 | 48,186 | -2,186 | 4,778596 |
63 | 61,376 | 1,624 | 2,637376 |
73 | 73,247 | -0,247 | 0,061009 |
48 | 48,186 | -0,186 | 0,034596 |
67 | 66,652 | 0,348 | 0,121104 |
62 | 64,014 | -2,014 | 4,056196 |
47 | 49,505 | -2,505 | 6,275025 |
67 | 70,609 | -3,609 | 13,02488 |
Дисперсия остатков вычисляется по формуле:
.
Построим график остатков с помощью MS Excel.
Рис. 1. График остатков.
... города (Юго-запад, Красносельский район). 2) Составьте матрицу парных коэффициентов корреляции исходных переменных. Вместо переменной х2 используйте фиктивную переменную z. 3) Постройте уравнение регрессии, характеризующее зависимость цены от всех факторов в линейной форме. Установите, какие факторы мультиколлинеарны. 4) Постройте модель у = f(х3, х6, х7, х8, z) в линейной форме. Какие факторы ...
... и детерминации и F-критериев Фишера наибольшие. 3. Множественная регрессия Цель работы – овладеть методикой построения линейных моделей множественной регрессии, оценки их существенности и значимости, расчетом показателей множественной регрессии и корреляции. Постановка задачи. По данным изучаемых регионов (таблица 1) изучить зависимость общего коэффициента рождаемости () от уровня бедности ...
... широкие возможности по созданию макросов. В ходе написания данной курсовой работы был создан макрос на языке SVB для проверки гипотезы о нормальности остатков регрессии. Необходимость разработки данного приложения связана с особенностями осуществления регрессионного анализа в пакете STATISTICA. Написанный модуль был использован при эконометрическом моделировании вторичного рынка жилья в г. ...
нты детерминации, коэффициенты эластичности и средние относительные ошибки аппроксимации. Сравнить модели по этим характеристикам и сделать вывод. Решение 1. Уравнение линейной регрессии имеет вид: = а0 + а1x. Построим линейную модель. Для удобства выполнения расчетов предварительно упорядочим всю таблицу исходных данных по возрастанию факторной переменной Х (Данные => Сортировка). ( ...
0 комментариев