3. Проверить выполнение предпосылок МНК

Проверим независимость остатков с помощью критерия Дарбина-Уотсона.

Вычислим коэффициент Дарбина-Уотсона по формуле:

.

Данные для расчета возьмем из таблицы 2.

dw = 0,803

Сравним полученное значение коэффициента Дарбина-Уотсона с табличными значениями границ  и  для уровня значимости 0,05 при k=1 и n=10. =0,88, =1,32, dw < d , значит, остатки содержат автокорреляцию. Наличие автокорреляции нарушает одну из предпосылок нормальной линейной модели регрессии.

Проверим наличие гетероскедастичности. Т.к. у нас малый объем выборки (n=10) используем метод Голдфельда-Квандта.

- упорядочим значения n наблюдений по мере возрастания переменной x и разделим на две группы с малыми и большими значениями фактора x соответственно.

- рассчитаем остаточную сумму квадратов для каждой группы.

Вычисления представим в таблицах 3 и 4.

Таблица 3. Промежуточные вычисления для 1-го уравнения регрессии.

t xi yi yi * xi xi*xi

1 27 46 1242 729 47 -1 1
2 27 48 1296 729 47 1 1
3 28 47 1316 784 49,5 -2,5 6,25
4 28 52 1456 784 49,5 2,5 6,25
средн. знач. 27,5 48,25

1326,875

756,25

5310,00

3026,00
n 4

2,5

- 20,5

14,5

Таблица 4. Промежуточные вычисления для 2-го уравнения регрессии.

t xi yi yi * xi xi*xi

1 37 63 2331 1369 63,789 -0,789 0,623
2 38 69 2622 1444 64,582 4,418 19,519
3 39 62 2418 1521 65,375 -3,375 11,391
4 41 67 2747 1681 66,961 0,039 0,002
5 44 67 2948 1936 69,340 -2,340 5,476
6 46 73 3358 2116 70,926 2,074 4,301
средн. знач. 40,833 66,833

2729,028

1667,361

16424

10067
n 6

0,793

34,448

41,310

 = =2,849

где  - остаточная сумма квадратов 1-ой регрессии,  - остаточная сумма квадратов 2-ой регрессии.

Полученное значение сравним с табличным значением F распределения для уровня значимости , со степенями свободы  и  ( - число наблюдений в первой группе, m – число оцениваемых параметров в уравнении регрессии).

, , m=1.

Если  > , то имеет место гетероскедастичность.

= 5,41

< ,

значит, гетероскедастичность отсутствует и предпосылка о том, что дисперсия остаточных величин постоянна для всех наблюдений выполняется.

4. Осуществить проверку значимости параметров уравнения регрессии с помощью t-критерия Стьюдента .

Расчетные значения t-критерия можно вычислить по формулам:

,

,

,

=35,5

Промежуточные расчеты представим в таблице:

Таблица 5. Промежуточные вычисления для расчета t- критерия

xi

38 6,25
28 56,25
27 72,25
37 2,25
46 110,25
27 72,25
41 30,25
39 12,25
28 56,25
44 72,25

=490,50

 для уровня значимости 0,05 и числа степеней свободы n-2=8

Так как  и  можно сделать вывод, что оба коэффициента регрессии значимые.

5. Вычислить коэффициент детерминации, проверить значимость уравнения регрессии с помощью F-критерия Фишера , найти среднюю относительную ошибку аппроксимации. Сделать вывод о качестве модели.

Коэффициент детерминации определяется по формуле:

Из расчетов нам известно, что

; .

Рассчитаем :

Таблица 6. Промежуточные вычисления для расчета коэффициента детерминации.

69 9,6 92,16
52 -7,4 54,76
46 -13,4 179,56
63 3,6 12,96
73 13,6 184,96
48 -11,4 129,96
67 7,6 57,76
62 2,6 6,76
47 -12,4 153,76
67 7,6 57,76

=930,4

=0,917.

Т.к. значение коэффициента детерминации близко к единице, качество модели считается высоким.

Теперь проверим значимость уравнения регрессии. Рассчитаем значение F-критерия Фишера  по формуле:

Уравнение регрессии с вероятностью 0,95 в целом статистически значимое, т.к. >.

Средняя относительная ошибка аппроксимации находится по формуле:


Таблица 7. Промежуточные вычисления для расчета средней относительной ошибки аппроксимации.

yi

69 6,305 0,091377
52 2,495 0,047981
46 -2,186 0,047522
63 1,624 0,025778
73 -0,247 0,003384
48 -0,186 0,003875
67 0,348 0,005194
62 -2,014 0,032484
47 -2,505 0,053298
67 -3,609 0,053866

 ,

значит модель имеет хорошее качество.

Рассчитаем коэффициент эластичности по формуле:

6. осуществить прогнозирование среднего значения показателя Y при уровне значимости , если прогнозное значение фактора X составит 80% от его максимального значения.

Рассчитаем стандартную ошибку прогноза


,

где

=930,4 ;

, для уровня значимости 0,1 и числа степеней свободы n-2=8

Доверительный интервал прогноза:

Таким образом, =61,112 , будет находиться между верхней границей, равной 82,176 и нижней границей, равной 40,048.


Информация о работе «Коэффициент детерминации. Значимость уравнения регрессии»
Раздел: Экономико-математическое моделирование
Количество знаков с пробелами: 11594
Количество таблиц: 11
Количество изображений: 5

Похожие работы

Скачать
11417
4
4

... города (Юго-запад, Красносельский район). 2) Составьте матрицу парных коэффициентов корреляции исходных переменных. Вместо переменной х2 используйте фиктивную переменную z. 3) Постройте уравнение регрессии, характеризующее зависимость цены от всех факторов в линейной форме. Установите, какие факторы мультиколлинеарны. 4) Постройте модель у = f(х3, х6, х7, х8, z) в линейной форме. Какие факторы ...

Скачать
19930
9
16

... и детерминации и F-критериев Фишера наибольшие. 3. Множественная регрессия Цель работы – овладеть методикой построения линейных моделей множественной регрессии, оценки их существенности и значимости, расчетом показателей множественной регрессии и корреляции. Постановка задачи. По данным изучаемых регионов (таблица 1) изучить зависимость общего коэффициента рождаемости () от уровня бедности ...

Скачать
48568
2
25

... широкие возможности по созданию макросов. В ходе написания данной курсовой работы был создан макрос на языке SVB для проверки гипотезы о нормальности остатков регрессии. Необходимость разработки данного приложения связана с особенностями осуществления регрессионного анализа в пакете STATISTICA. Написанный модуль был использован при эконометрическом моделировании вторичного рынка жилья в г. ...

Скачать
14759
4
6

нты детерминации, коэффициенты эластичности и средние относительные ошибки аппроксимации. Сравнить модели по этим характеристикам и сделать вывод. Решение 1.  Уравнение линейной регрессии имеет вид: = а0 + а1x. Построим линейную модель. Для удобства выполнения расчетов предварительно упорядочим всю таблицу исходных данных по возрастанию факторной переменной Х (Данные => Сортировка). ( ...

0 комментариев


Наверх