2. Замкнутые и открытые множества
Пусть задано множество .
Точка называется предельной точкой множества , если из того, что и , следует, что .
Предельная точка может принадлежать и не принадлежать , но если все предельные точки принадлежат , то множество называется замкнутым.
Таким образом, множество замкнуто, если из того, что и , следует, что .
Пустое множество считается замкнутым.
Пример 1. Пусть есть функция, определенная и непрерывная на и — любое число.
Множества 1) , 2) , 3) замкнуты.
Доказательство в случае 1). Пусть и ; тогда и . Но тогда и , т.е. .
Пример 2. Шар V= есть замкнутое множество в силу
примера 1, потому что функция определена и непрерывна на .
Отметим, что если— замкнутое множество, то — открытое множество.
В самом деле, если бы это было не так, то в существовала бы точка ,которая не есть внутренняя точка . Выходит, что, каково бы ни было натуральное число , должна найтись точка, для которой
Мы получили бы последовательность точек , . Но по условию замкнуто, и потому . Мы получили противоречие с тем, что предполагалось, что .
Обратно, если — открытое множество, то — замкнутое множество.
В самом деле, если бы это было не так, то нашлась бы последовательность точек , и . Но — открытое множество, и можно покрыть шаром с центром в ней, полностью принадлежащим . Получилось противоречие с тем, что любой такой шар содержит точки .
Пример 3. Пусть — непрерывная функция. 1) множество замкнуто, а открыто. 2) множество замкнуто, а открыто.
Если задано произвольное непустое множество , отличное от , то можно представить в виде суммы трех непересекающихся попарно множеств:
,
где — совокупность внутренних точек — это открытое ядро , — совокупность внутренних точек — это открытое ядро , — совокупность точек, каждая из которых не есть внутренняя для , но и не есть внутренняя для . Такие точки называются граничными точками , а называется границей ; открыто, открыто, + тоже открыто, = замкнуто.
Таким образом, граница есть замкнутое множество.
Любую граничную точку множества можно определить как такую точку , что любой шар с центром в ней содержит как точки , так и точки . Сама точка может принадлежать и не принадлежать .
Пустое множество считается одновременно замкнутым и открытым.
Любое из множеств , входящих в теоретико-множественную сумму (1), может оказаться пустым.
Пример 4. Пусть ; тогда , — открытое ядро, — открытое ядро ,— граница (не принадлежит ).
Пример 5. — множество точек с рациональными координатами. — открытое ядро — пустое множество, — открытое ядро — пустое множество, — граница .
В следующих двух теоремах устанавливаются основные свойства замкнутых множеств. При этом рассматриваются множества, содержащиеся в одном и том же метрическом пространстве .
Теорема 1. Сумма конечного числа замкнутых множеств также – замкнутое множество.
Доказательство. Так как сумму любого конечного числа множеств можно образовать последовательным прибавлением по одному множеству, то достаточно доказать теорему для суммы двух множеств.
Пусть и - замкнутые множества, и . В последовательности существует бесконечная частичная последовательность , состоящая целиком из точек одного из данных множеств, например . Но тоже стремится к , и так как замкнуто, то , а потому .
Теорема 2. Пересечение любого множества замкнутых множеств замкнуто.
Доказательство. Пусть и все замкнуты. Если и , то все при любом , а потому и при любом . Следовательно, , и замкнуто.
В дальнейшем важную роль будет играть операция замыкания произвольного множества , заключающаяся в присоединении к множеству пределов всех сходящихся последовательностей его точек. Получаемое таким образом множество обозначается и называется замыканием множества .
В замыканием интервала , будет отрезок . Однако в произвольном метрическом пространстве для замыкания открытого шара имеет место лишь включение , но равенство вовсе не обязательно.
Лемма 1: всякая точка представима в виде , где .
Лемма 2: для того чтобы , необходимо и достаточно, чтобы, каково бы ни было , существовала такая точка , что .
Теорема 3. Замыкание любого множества замкнуто.
Теорема 4. Замыкание есть наименьшее замкнутое множество, содержащее .
Пусть . Если к множеству добавить все его предельные точки, то получим множество, называемое замыканием и обозначим его так: .
У замкнутого множества предельных точек, не принадлежащих ему, нет. В самом деле, любая точка есть внутренняя точка множества . Таким образом, если — замкнутое множество, то .
Точка называется точкой сгущения множества M, если в каждой ее окрестности содержится хоть одна точка множества M, отличная от .
Точки сгущения для открытой области, не принадлежащие ей, называются пограничными точками этой области. Пограничные точки в их совокупности образуют границу области. Открытая область вместе с границей называется замкнутой областью. Напомню, что открытой областью называется множество, целиком состоящее из внутренних точек.
... о неоклассической производственной функции, то понятию предельной полезности из теории потребления и теории производства соответствует понятие предельной производительности (dY/dXi), которое является здесь одним из ключевых. Законы же убывающей предельной полезности и убывающей предельной нормы замещения, потребительских благ в теории производства сформулировонны как закон убывающей предельной ...
... меньшей и меньшей полезностью,то потребитель станет покупать дополнительные единицы продукта лишь при условии снижения их цены.Потребитель купит, скажем два гамбургера по цене 1$, но вследствие убывающей предельной полезности дополнительных единиц продукта он предпочтет не покупать больш этого продукта по данной цене, т.к., отдавая деньги, он фактически отказывается от других товаров, т.е. ...
... -либо внешнего воздействия, и, наоборот, иногда требуются интенсивные внешние воздействия (катализаторы) для того, чтобы вызвать обратимые переходы изомеров друг в друга. Распространенное в органической химии явление, заключающееся в существовании двух или нескольких изомерных форм молекул, находящихся в состоянии динамического равновесия, называется таутомерией. В настоящее время установлено, ...
... . Пластический шарнир имеет следующие отличия: 1) в нём действует изгибающий момент, равный Mu ; 2) он односторонний; 3) при уменьшении нагрузки он может закрыться. 2. Предельное равновесие балок и рам Приведенное вначале определение предельного состояния системы слишком общее и для достижения результата должно быть конкретизировано. Для балок и рам, материал которых ...
0 комментариев