Министерство образования и науки республики Казахстан
Северо-Казахстанский государственный университет
им. М. Козыбаева
Факультет информационных технологий
Кафедра математики
Курсовая работа
"Некоторые интерполяционные свойства конечномерных сетевых пространств и пространств Лоренца"
Петропавловск, 2007
Аннотация
В данной курсовой работе исследованы свойства некоторых семейств конечномерных пространств и доказаны интерполяционные теоремы для этих классов пространств.
Содержание
Введение
1. Основные понятия и некоторые классические теоремы теории интерполяции
2. Общие свойства интерполяционных пространств
3. О норме и спектральном радиусе неотрицательных матриц
4. Некоторые интерполяционные свойства семейств конечномерных пространств
Заключение
Список использованной литературы
Введение
Теория интерполяции функциональных пространств как самостоятельная ветвь функционального анализа сформировалась за последние 40-45 лет. Она играет все возрастающую роль в анализе и его приложениях. Центральной темой теории является проблема интерполяции линейных операторов. Эта проблема тесно связана с задачей построения совокупности "промежуточных" пространств – арены, на которой действуют "промежуточные" операторы. Основополагающий вклад в теорию был сделан Эл.-Л. Лионсом, А.П. Кальдероном и С.Г. Крейном. При этом не следует, конечно, забывать, что исследованием названных авторов предшествовали (и стимулировали их) классические теоремы Рисса и Марцинкевича об интерполяции линейных операторов в пространствах lp.
Теория интерполяция также применяется в других областях анализа (например, в теории уравнений с частными производными, численном анализе, теории аппроксимации). Рассматривают два существенно различных интерполяционных метода: метод вещественной интерполяции и метод комплексной интерполяции. Модельными примерами для этих методов служат доказательства теоремы Марцинкевича и теоремы Рисса-Торина соответственно. Один из самых ранних примеров интерполяции линейных операторов был предложен Шуром. Шур сформулировал свой результат для билинейных форм, или вернее для матриц, соответствующих этим формам. В 1926 году М. Рисс доказал первую версию теоремы Рисса-Торина с ограничением p≤q, которое как он показал, существенно в случае, когда в качестве скаляров берутся вещественные числа. Основным рабочим инструментом Рисса было неравенство Гельдера. Но в 1938 году Торин привел совершенно новое доказательство и смог устранить ограничение p≤q. В то время как Рисс пользовался вещественными скалярами и неравенством Гельдера, Торин использовал комплексные скаляры и принцип максимума.
1. Основные понятия и некоторые классические теоремы теории интерполяции
Пусть (u,μ) – пространство с мерой μ, которую будем всегда предполагать положительной. Две рассматриваемые функции будем считать равными, если они отличаются друг от друга лишь на множестве нулевой μ-меры. При этом обозначим через lp(u,dμ) или просто (lp(dμ), lp(u) или lp) лебегово пространство всех скалярнозначных μ-измерных функций f и u, для которых величина
конечна, здесь 1≤p<∞.
В случае, когда p=∞, пространство lp состоит из всех μ-измеримых ограниченных функций. В этом случае
Пусть T - линейное отображение пространства lp=lp(u,dμ) в пространство lq=lq(v,dν). Это означает, что T(αf+βg)=αT(f)+βT(g).
Если к тому же T- ограниченное отображение, то есть если величина конечна, то пишут T: lp®lq.
Число μ называется нормой отображения T. Справедливы следующие известные теоремы:
Теорема 1.1 (интерполяционная теорема Рисса-Торина)
Предположим, что и что T: с нормой μ0 и T : с нормой μ1.
Тогда T: → с нормой μ, удовлетворяющей неравенству (*), при условии, что 0<θ<1 и ; .
Неравенство (*) означает, что μ как функция от θ логарифмически выпукла, то есть lnμ – выпуклая функция.
Доказательство теоремы приведено в [1].
Для скалярнозначной μ-измерной функции f, принимающей почти всюду конечные значения, введем функцию распределения m(σ,f) по формуле
Ясно, что m(σ,f) представляет собой вещественнозначную функцию от σ, определенную на положительной вещественной полуоси . Очевидно, что m(σ,f) – невозрастающая и непрерывная справа функция. Кроме того,
при 1≤p<∞
и .
Используя функцию распределения m(σ,f), введем теперь слабые lp-пространства, обозначаемые через . Пространства , 1≤p<∞, состоит из всех функций f , таких что
В предельном случае p=∞, положим .
Заметим, что не является нормой при 1≤p<∞.
Действительно, ясно, что
Применяя неравенство , заключаем, что
Последнее означает, что представляет собой так называемое квазинормированное векторное пространство. (В отличие от нормированных пространств, где выполняются неравенство треугольника , в квазинормированных пространствах имеет место лишь "квази-неравенство треугольника" для некоторого k≥1.) Однако, при p>1 в пространстве можно ввести норму, при наделении которой оно становится банаховым пространством.
Теорема 1.2 (Интерполяционная теорема Марцинкевича)
Пусть p0≠p1 и
T: с нормой ,
T: с нормой .
Положим ; , и допустим, что p≤q.
Тогда T: →, с нормой μ, удовлетворяющей неравенству .
Эта теорема, напоминает теорему Рисса-Торина, но отличается от нее во многих важных отношениях.
Во-первых, здесь скаляры могут быть как вещественными, так и комплексными, в то время как в теореме Рисса-Торина обязательно нужно, чтобы скаляры были комплексными. Во-вторых здесь имеется ограничение p≤q. Наиболее важная особенность состоит в том, что в предпосылках теоремы пространства и заменены на более широкие пространства и .
Таким образом, теорема Марцинкевича может оказаться применимой в тех случаях, где теорема Рисса-Торина уже не работает.
2. Общие свойства интерполяционных пространствПусть A - векторное пространство над полем вещественных или комплексных чисел. Оно называется нормированным векторных пространством, если существует вещественнозначная функция (норма) , определенная на A, удовлетворяющая условием.
1) , причем
2) (λ-скаляр)
3) .
Пусть A и B – два нормированных векторных пространства. Отображение T из A в B называется ограниченным линейным оператором, если
, и .
Ясно, что всякий ограниченный линейный оператор непрерывен.
Пусть A0 и A1 – топологических векторных пространства. Говорят, что
A0 и A1 совместимы, если существует отделимое топологическое векторное пространство U, такое, что A0 и A1, являются подпространствами. В этом случае можно образовать сумму A0 + A1, и пересечение A0∩A1. Сумма состоит из всех aU, представимых в виде a=a0+a1, где a0A, и a1A,
Справедлива следующая лемма
Лемма 2.1. Пусть A0 и A1-совместимые нормированные векторные пространства. Тогда
A0∩A1, есть нормированное векторное пространство с нормой
A0 + A1, также представляет собой нормированное векторное пространство с нормой
При этом если A0 и A1 – полные пространства, то A0∩A1 и A0 + A1 также полны.
Дадим некоторые важные определения:
Категория σ состоит из объектов A,B,C…., и морфизмов R,S,T,…. между объектами и морфизмами определено трехместное отношение T: A↷B.
Если T: A↷B и S: B↷C, то существует морфизм ST, называемый произведением (или композицией) морфизмов S и T, такой, что ST: A↷ C.
Операция взятия произведения морфизмов удовлетворяет закону ассоциативности: T(SR)=(TS)R. далее, для всякого объекта A из σ существует морфизм I=IA, такой, что для любого морфизма T: A↷A TI=IT=T
Через σ1 обозначим категорию всех совместимых пар пространств из σ.
Определение 2.1. Пусть =(A0,A1)-заданная пара из σ1. Пространство A из σ будем называть промежуточным между A0 и A1 (или относительно ), если имеют место непрерывные вложения.
.
Если, кроме, того T: ↷ влечет T: A ↷ A, то A называется интерполяционным пространством между A0 и A1.
Более общим образом, пусть и - две пары из σ1. Тогда два пространства A и B из σ называются интерполяционными относительно и соответственно и T: ↷ влечет T: A↷ B.
Если выполнено
,
В этом случае, говорят, что A и B равномерные интерполяционные пространства.
Определение 2.2 Интерполяционные пространства A и B называются пространствами типа θ (0≤θ≤1), если
В случае с=1 говорят, что A и B - точные интерполяционные пространства типа θ.
... мере, синергетическим стилем мышления может быть некой платформой для открытого творческого диалога между учеными, мыслителями, деятелями искусства, имеющими различные творческие установки и взгляды на мир. 2. Некоторые парадоксальные следствия синергетики Множество новых парадоксальных идей, образов и представлений возникает в синергетике. Кроме того, с точки зрения синергетики может быть ...
0 комментариев