3.2. Разработка и испытание поверхностного источника фосфора на основе спиртового раствора ортофосфорной кислоты
Для приготовления источника на основе спиртового раствора ортофосфорной кислоты растворы этилового спирта и кислоты смешивались в отношении 1:1.
Данный раствор наносился на полупроводниковые пластины кремния методом центрифугирования. После нанесения раствора пластины помещались на электропечь для удаления растворителя.
Далее проводился диффузионный отжиг при температуре 950°С. После проведения процесса диффузии на поверхности пластин кремния образовывалась цветная пленка фосфоросиликатного стекла. Опыт показал, что p – n переход в полупроводниковой пластине кремния при использовании данного источника примеси получится только в том случае, если после диффузии на поверхности пластин образуется цветная пленка.
Окрашивание после шлифовки лунок удобно проводить в смеси плавиковой и азотной кислот. При этом в раствор плавиковой кислоты необходимо добавить несколько капель разбавленной азотной кислоты. В результате на поверхности пластины кремния ободок у лунок потемнеет и можно под микроскопом легко определить хорду.
Для исследований источника были взяты четыре образца кремния p-типа с удельным сопротивлением ρ = 7 Ом∙см, ориентации (111). После нанесения источника описанным способом данные образцы выдерживались в диффузионной печи заданное время.
Далее в таблице 3.2 приводятся результаты по определннию глубины залегания p – n перехода.
Таблица 3.2.
Зависимость глубины залегания p – n перехода от времени проведения диффузии для источника на основе ортофосфорной кислоты
№ образца | Температура,°С | Время диффузии, мин | Li, мкм | xji, мкм | Среднее значение xj, мкм |
1 | 950 | 20 | 190 | 0,340 | 0,35 |
195 | 0,359 | ||||
200 | 0,377 | ||||
190 | 0,340 | ||||
195 | 0,359 | ||||
2 | 40 | 240 | 0,543 | 0,55 | |
240 | 0,543 | ||||
240 | 0,543 | ||||
245 | 0,566 | ||||
245 | 0,566 | ||||
3 | 60 | 270 | 0,688 | 0,69 | |
265 | 0,663 | ||||
270 | 0,688 | ||||
275 | 0,713 | ||||
270 | 0,688 | ||||
4 | 80 | 295 | 0,820 | 0,83 | |
295 | 0,820 | ||||
295 | 0,820 | ||||
300 | 0,849 | ||||
295 | 0,820 |
Рис. 3.2. Зависимость глубины залегания p – n перехода от времени проведения диффузии (Т=950°С).
... к ним вызван экологическими соображениями, с одной стороны, и ограниченностью традиционных земных ресурсов — с другой. Особое место среди альтернативных и возобновляемых источников энергии занимают фотоэлектрические преобразователи солнечной энергии, изучение которых превратилось в отдельное научное направление – фотовольтаику. Однако высокая стоимость солнечных элементов до недавнего времени ...
... голоса, слушают пение птиц, плеск волн и шум ветра, дышат свежим воздухом. Воспользоваться таким транспортом захочет каждый, кто любит совершать водные путешествия. 6. РОССИЯ, УКРАИНА И СОЛНЕЧНАЯ ЭНЕРГЕТИКА В России в настоящее время имеется восемь предприятий, имеющих технологии и производственные мощности для изготовления 2 МВт солнечных элементов и модулей в год. В 1992 году на ...
... подавляет в кремнии генерацию термодоноров, вводимых в кремний в температурном интервале 400-500 оС. Выводы Сплавы Si1-xGex в настоящее время являются тем материалом, который желательно возможно быстрее освоить в производстве. Их достаточно предсказуемые свойства позволяют получать монокристаллы с заданными параметрами путём аппроксимации зависимости свойств от состава (зависимости ...
... . ПРИМЕНЕНИЕ ИОННОГО ЛЕГИРОВАНИЯ В ТЕХНОЛОГИИ СБИС Создание мелких переходов Требование формирования n+ слоев, залегающих на небольшой глубине, для СБИС можно легко удовлетворить с помощью процесса ионной имплантации Аs. Мышьяк имеет очень малую длину проецированного пробега (30 нм) при проведении обычной имплантации с энергией ионов 50 кэВ. Одной из прогрессивных тенденций развитии ...
0 комментариев