1.1.7.2.1. Приготовление пленкообразующих растворов, их нанесение и термодеструкция
Технология приготовления пленкообразующих растворов, их нанесение и термодеструкция играет исключительно важную роль в процессе создания диффузионных слоев данным методом. Наиболее полно этот вопрос освещен в [14 ].
Например, описывается получение пленкообразующих растворов путем проведения гидролиза этилового эфира ортокремневой кислоты в две стадии. Процесс осуществляют путем смешивания 130 мл этилового эфира ортокремневой кислоты (ТЭС) с 60 мл 86 %-ного спирта, 20 мл воды и 2 капель концентрированной соляной кислоты. Через час к раствору приливают еще 90 мл ТЭС, и раствор оставляют на сутки при комнатной температуре. Для получения более глубоко гидролизованного продукта вносят 20 мл разбавленной (1: 5) соляной кислоты в 100 мл полученного раствора и через час вливают при перемешивании 100 мл воды.
Другим методом пленкообразующий раствор получают осуществляя гидролиз ТЭС солятой кислотой в количестве 0,6 мл плотностью 1,19 в 98 %-ном этиловом спирте. При этом на 0,04 – 0,12 г-моля HCl берется 1 г-моль ТЭС и 4 моля воды. В качестве растворителя применяют также ацетон. В таком растворе пленкообразующие свойства проявляются не сразу, а токда, когда в основной массе пленкообразующего раствора вместо ТЭС будет находиться продукт его гидролитической поликонденсации Si2O(OC2H5)6 и небольшое количество соединений, содержащих 3, 4 или 5 атомов кремния. При нанесении этих растворов на вращающуюся подложку испаряются летучие компоненты и образуется оводненная полиэфирная пленка, которая последующим прогреванием при 230°С и более высоких температурах превращается в кремнеземную.
Широкое практическое применение пленкообразующих растворов для получения силикатных пленок затруднено отсутствием данных об их свойствах. В литературе имеются лишь отрывочные, единичные сведения по рецептуре их приготовления. Способность этих растворов изменять свои свойства во времени также, видимо, затрудняет их использование.
Как показали исследования [14], весьма легко осуществимо применение растворов неполностью полимеризованного ТЭС для создания пленки на полупроводниковом кремнии. Для этого необходимо провести частичную гидролитическую поликонденсацию ТЭС смесью, содержащей н-бутиловый спирт, воду, кислоту, этиловый спирт, диоксан и др. Например, можно исходить из следующих соотношений: на 1 моль ТЭС взять 2 – 6 молей этилового и 4 – 7 молей н-бутилового спирта, 6 – 8 молей воды и несколько десятитысячных моля соляной кислоты. Смешать компоненты растворителя (спирты, вода и кислота), а затем при перемешивании внести необходимое количество ТЭС. Возможность получения пленки из этих растворов устанавливают опытным путем. Для этого через определенные промежутки времени наносят ~ 0,5 мл раствора на полированную пластину кремния, закрепленную вакуумным присосом на оси центрифуги, сообщают ей вращательное движение. Появление интерференционной окраски и равномерное распределение пленки по поверхности – признак того, что раствор годен к применению. Сроки хранения и склонность к образованию пленки различны для растворов, отличающихся между собой соотношением компонентов. Для каждого состава рабочего раствора эти сроки устанавливаются экспериментально при строго фиксированной скорости вращения пластины. При длительном хранении растворов процесс гидролиза проходит глубже. Это ведет к увеличению вязкости раствора и, следовательно, получению более толстых пленок при той же скорости вращения пластины.
Промежуток времени от момента возбуждения гидролиза до появления пленкообразующих свойств, связанных с химическими и структурными превращениями, получил название времени созревания растворов. Созревшие растворы пригодны для нанесения последовательно большого количества слоев. При этом следует проводить между нанесением слоев промежуточную термообработку при 600 – 800°С в течение 1 мин. Таким путем можно увеличить толщину пленки, например от 0,3 до нескольких микрометров. Созревание растворов сменяется старением. На этой стадии растворы теряют подвижность, исчезают их пленкообразующие свойства.
Влияние на скорость процесса гидролитической поликонденсации ТЭС таких факторов, как состав гомогенной среды, количество этилового спирта, воды и кислоты хорошо прослеживается по тому, как меняется динамическая вязкость во времени при изменении этих факторов.
В [14] установлено, что процесс, приводящий к появлению пленкообразующих свойств у растворов, протекает быстрее при увеличении количества взятой воды, уменьшении кислотности среды и уменьшении количества этилового спирта. Замена ацетона простыми спиртами также усиливает процесс гидролиза, при этом чем выше молекулярный вес спирта, тем сильнее это проявляется.
Исходя из практического опыта, полученного в результате экспериментов [14], установлено, что более равномерные по толщине пленки получаются тогда, когда гомогенной средой является смесь бутилового и этилового спиртов или бутилового спирта и ацетона. В связи с этим обстоятельством представляется особенно целесообразным применение в качестве гомогенной среды смеси указанных растворителей в соотношениях 2 : 1, 1 : 1, 1 : 2.
Пленкообразующие растворы со временем становятся более вязкими и поэтому толщина получаемых пленок тоже возрастает. Кроме того, толщина получаемой пленки зависит и от скорости вращения центрифуги.
Таким образом, для получения пленок одинаковой толщины следует использовать растворы одинакового возраста и наносить их при одном и том же числе оборотов центрифуги.
Приготовление растворов, предназначенных для получения многокомпонентных силикатных пленок, содержащих бор, фосфор, мышьяк, золото или другие элементы, осуществляется путем проведения гидролитической поликонденсации ТЭС с введением соответствующих солей или их соединений [14]. Основное условие при этом – возможность растворения солей или других соединений в гомогенной среде и низкие температуры их разложения. Как известно, этими качествами обладают перечисленные выше азотнокислые соли. В процессе приготовления растворов сначала растворяют соли в смеси воды с органическими растворителями, затем вливают ТЭС. Если количество солей составляет 3 – 7 % от общей массы раствора, то раствор становится пленкообразующим через 30 мин.
Качество получаемой из растворов пленки зависит от чистоты покрываемой поверхности, чистоты воздуха в помещении, где наносят пленки, срока хранения растворов и скорости вращения подложки.
Окончательное формирование стекловидной пленки, т.е. проведение термодеструкции полимера осуществляется в атмосфере воздуха при 600 – 800°С в течение 1 мин. Этот процесс осуществляют в электрической печи, применяемой обычно для проведения диффузии примесей из пленки в полупроводник. Температура деструкции поддерживается с точностью ± 10°С.
До термодеструкции пленка может быть названа полимером, в котором равномерно распределены молекулы введенных солей. В процессе термодеструкции происходит одновременно окисление полимера и превращение его в кремнезем, разложение азотнокислых солей или других соединений. Следует отметить, что эти процессы протекают при температуре на несколько сотен градусов ниже температуры формирования стекловидных пленок из смеси порошков. Такое резкое снижение температуры формирования стекловидных пленок из растворов обусловлено применением растворов, в которых будущая твердая фаза находится в состоянии молекулярной дисперсности. Это обстоятельство делает весьма перспективным применение пленкообразующих растворов полиоксисоединений кремния в технологии создания солнечных элементов. Кремнеземные пленки, легированные примесями, могут служить источником примесей при осуществлении их диффузии в полупроводник.
Метод получения пленок из пленкообразующих растворов с помощью центрифужного нанесения может применяться только для создания тонкослойных покрытий на плоских образцах и на пластинах с неглубоким рельефом поверхности. Состав получаемых пленок лимитируется растворимостью исходных компонентов в спирте и в воде.
Преимущество способа заключается в том, что он позволяет получать при низких температурах силикатные пленки, богатые кремнеземом (30 – 99,9 % SiO2), т.е. те составы, которые требуют температуры выше 1100°С для наплавления на поверхность полупроводника из смеси порошков. При температуре выше 1100°С уже могут возникать нарушения электрофизических свойств у полупроводниковых структур.
Предлагаемый способ достаточно прост, легко вписывается в технологию, применяемую обычно при изготовлении полупроводниковых устройств, и поэтому не требует дополнительного оборудования.
... к ним вызван экологическими соображениями, с одной стороны, и ограниченностью традиционных земных ресурсов — с другой. Особое место среди альтернативных и возобновляемых источников энергии занимают фотоэлектрические преобразователи солнечной энергии, изучение которых превратилось в отдельное научное направление – фотовольтаику. Однако высокая стоимость солнечных элементов до недавнего времени ...
... голоса, слушают пение птиц, плеск волн и шум ветра, дышат свежим воздухом. Воспользоваться таким транспортом захочет каждый, кто любит совершать водные путешествия. 6. РОССИЯ, УКРАИНА И СОЛНЕЧНАЯ ЭНЕРГЕТИКА В России в настоящее время имеется восемь предприятий, имеющих технологии и производственные мощности для изготовления 2 МВт солнечных элементов и модулей в год. В 1992 году на ...
... подавляет в кремнии генерацию термодоноров, вводимых в кремний в температурном интервале 400-500 оС. Выводы Сплавы Si1-xGex в настоящее время являются тем материалом, который желательно возможно быстрее освоить в производстве. Их достаточно предсказуемые свойства позволяют получать монокристаллы с заданными параметрами путём аппроксимации зависимости свойств от состава (зависимости ...
... . ПРИМЕНЕНИЕ ИОННОГО ЛЕГИРОВАНИЯ В ТЕХНОЛОГИИ СБИС Создание мелких переходов Требование формирования n+ слоев, залегающих на небольшой глубине, для СБИС можно легко удовлетворить с помощью процесса ионной имплантации Аs. Мышьяк имеет очень малую длину проецированного пробега (30 нм) при проведении обычной имплантации с энергией ионов 50 кэВ. Одной из прогрессивных тенденций развитии ...
0 комментариев