7.2.2 Струйные аппараты, формирующие плоские струи

Плоская гидроабразивная струя в отличие от осесимметричной обладает более широкими технологическими возможностями, особенно при обработке сложнопрофильных поверхностей. Применение струйных аппаратов, формирующих плоские гидроабразивные струи, позволяет в большинстве случаев значительно упростить схему обработки, обеспечить равномерный съем материала при стабильном получении заданных показателей поверхностного слоя обрабатываемой детали. В то же время формирование плоской струи, в которой профиль скорости и распределение абразивных частиц по ширине были бы равномерными, является более сложной задачей, чем в случае струи круглого сечения. Несколько усложняется конструкция струйного аппарата, а также технология изготовления активных и смесительных сопел.

В отличие от распространенных струйных аппаратов, формирующих круглые струи, число реально действующих конструкций струйных аппаратов для формирования плоских гидроабразивных струй ограничено. Плоскую струю можно получить различными способами.

На рис. 4.32 показан струйный аппарат, который формирует струю с равномерным по ширине профилем скорости за счет перекрытия расположенных в ряд с определенным шагом струй круглого сечения. Аппарат используется для обработки сложнопрофильных поверхностей, причем его конструкция позволяет в широких пределах регулировать

размеры зоны обработки. Струйный аппарат состоит из корпуса 1 со штуцером 2, через который подается суспензия. В корпусе 1 установлены секции активных 3 и смесительных 4 сопел, причем расстояние между осями сопел выбирается из соотношения h=kdс, где к — коэффициент смещения осей, изменяющийся в пределах 1,1...2,9 и зависящий от угла распыла сопла β и диаметра смесительного сопла dс. Секция активных сопел 3 имеет распределительную камеру 5, закрытую крышкой 6, на которой установлен штуцер 7, служащий Для подачи активного газа (воздуха). На крышке 6 установлены запорные устройства 8 активных сопел 3. Для уменьшения износа выходной части смесительные сопла 10 снабжены керамическими вставками 11.

Струйный аппарат работает следующим образом. Воздух через штуцер 7 подается в распределительную камеру 5, откуда попадает в активные сопла 9, где разгоняется до звуковой скорости. Одновременно суспензия через штуцер 2 поступает к смесительным соплам 10, где происходит ее подмешивание к потоку воздуха. Гидроабразивные струи 12, выходящие из смесительных сопел, имеют угол распыла β и пересекаются в плоскости X—X, за которой образуется сплошной гидроабразивный поток. В результате наложения и взаимодействии отдельных гидроабразивных струй происходит выравнивание поля скоростей внутри сплошного потока. На некотором расстоянии L от смесительных сопел, которое зависит от угла распыла струи, выходного диаметра смесительных сопел и расстояния между их осями, скорости внутри потока выравниваются настолько, что обеспечивают равномерный съем материала с обрабатываемой поверхности.

Для обработки поверхностей различных размеров без изменения положения струйного аппарата активные сопла имеют запорные устройства 8. Перекрывая доступ воздуха к части активных сопел, можно регулировать размеры зоны обработки, что расширяет технологические возможности струйного аппарата.


В большинстве случаев плоские гидроабразивные струи формируются струйными аппаратами, в которых смесительное сопло выполнено в виде щели. На рис. 4.33 приведены конструкции щелевых смесительных сопел. Сопло (рис. 4.33, а) с размерами выходного отверстия 5X16 мм состоит из двух половин, соединенных винтами. На внутреннюю поверхность сопла нанесено износостойкое покрытие на основе карбида вольфрама. Разъемная конструкция позволяет по мере износа покрытия наносить новое, что значительно увеличивает срок службы сопла. На рис. 4.33, б показано щелевое сопло с размерами выходного отверстия 4X16 мм. Сопла данной конструкции изготавливаются путем спекании абразивного порошка черного карбида кремния и имеют срок службы более 100 часов.

На рис. 4.34 приведена конструкция струйного аппарата со щелевым соплом, предназначенного для обработки фасонных поверхностей (пресс-форм) . Аппарат работает следующим образом. Гидроабразивная суспензия через пульпопровод 2 поступает в корпус 1, который заканчивается насадкой прямоугольного сечения. Сюда же через трубопровод 4 поступает сжатый воздух. Смешиваясь с воздухом, суспензия разгоняется в камере смешивания и с большой скоростью выходит из щели под заданным углом, который регулируется с помощью подвески 3, на обрабатываемую деталь 5.

Для обработки лопаток ГТД используется струйный аппарат, показанный на рис. 4.35. Конструкция струйного аппарата позволяет устанавливать щелевые смесительные сопла с шириной выходного отверстия до 50 мм. Аппарат состоит из смесительного сопла 1, двух корпусов 2 и 10, соединенных винтами 4, активного сопла 3, закрепленного с помощью винтов 12 на переходнике 5, крышки в со штуцером 9 для подачи сжатого воздуха, крышки 7 со штуцером 15 для подачи суспензии, клина 14, приваренного к крышке 6 и служащего для разделения потока суспензии, кронштейна 11 для крепления струйного аппарата, штифтов 13 для центрирования относительно друг друга смесительного и активного сопел. Регулировка расстояния между выходным торцем активного сопла и входным горнем смесительного сопла осуществляется гайками 8. Смесительное сопло струйного аппарата по аналогии с соплом, показанным на рис. 4.33а состоит из двух половин, на внутреннюю поверхность которых нанесено износостойкое покрытие. При ширине выходного отверстия более 20 мм на внутренней поверхности сопла с равномерным шагом выполняются радиусные канавки, диаметры DR которых выбирают равными 1,2...1,5, а шаг Hk 1,0—2,2 высоты hc щелевою отверстии При этом активное сопло выполняется в виде ряда круглых отверстий, расположенных соосно с радиусными канавками. Данная конструкция смесительного и активного сопел обеспечивает равномерное распределение абразивных частиц по сечению гидроабразивной струи, что приводит к повышению производительности обработки при более равномерном съеме материала.

Было отмечено, что при прочих равных условиях (отношение площадей сечений, расходов и давлений подачи воздуха и суспензии и т. д.) струйные аппараты со щелевыми соплами обеспечивают более высокую производительность обработки, чем аппараты с круглыми соплами. Иллюстрацией этому служат графики на рис. 4.36.

Результаты исследования шероховатости поверхности после струйной ГАО щелевыми соплами показали, что она не отличается от шероховатости, получаемой при обработке соплами с круглым выходным сечением. Это объясняется весьма близкими значениями скорости частиц на оси в плоской и круглой струях (см. рис. 3.37, 4.20) при изменении расстояния от среза смесительного сопла в диапазоне от 5мм до 150 мм. Следует отметить хорошую стабильность результатов измерений шероховатости поверхности после обработки щелевыми соплами, что объясняется более равномерным съемом металла.

Исследования остаточных напряжений после обработки плоской гидроабразивной струей показали, что при одинаковой глубине залегания они имеют несколько большие значения (на 5...8 %), чем при обработке струей круглого сечения. Увеличение напряжений происходит за счет увеличения и более равномерного распределения по обрабатываемой поверхности абразивных частиц, имеющих в момент удара максимальную скорость (скорость на оси струн).



Информация о работе «Струйная гидроабразивная обработка поверхностей»
Раздел: Промышленность, производство
Количество знаков с пробелами: 75558
Количество таблиц: 1
Количество изображений: 29

Похожие работы

Скачать
26597
0
0

... обработки поверхности реза заготовки, вследствие чего повысить производительность и уменьшить себестоимость изготовления деталей. Высокая точность резки Резка по контуру любой сложности При гидроабразивной обработке можно воспроизводить контуры любой сложности. Струя жидкости по своим техническим возможностям приближается к идеальному точечному инструменту, что позволяет обрабатывать профиль ...

Скачать
81477
3
4

... месте. Кроме того, должен быть минимально допустимый запас специальных средств пожаротушения (порошковых, газовых, пенных, комбинированных). 2. Технологический процесс окрашивания металлических поверхностей современными масляными составами. 2.1 Введение Как известно, черные металлы (к которым относится железо и некоторые его сплавы) термодинамически нестабильны и довольно легко ...

Скачать
36676
0
3

... в поверхность очищаемого изделия. В результате на поверхности очищенного изделия образуется слой металла, восстановленного из оксидов. Энергозатраты на очистку 1 м2 в зависимости от степени загрязненности поверхности составляют 0,3 – 2,0 кВт/ч.   Глава 3 АБРАЗИВНЫЕ МАТЕРИАЛЫ ИЗ ОТХОДОВ ОГНЕВОЙ ЗАЧИСТКИ ПОВЕРХНОСТЕЙ Огневая зачистка поверхности стальных заготовок, болванок, брусков и плит, ...

Скачать
67036
3
2

... противовесов, неоптимальные зазоры, неправильно подобранная пара трения «вал - антифрикционный материал», неверный выбор места подвода смазки, сорта смазки и др. 3. Ремонт и восстановление вкладыша 3.1 Выбор материала для антифрикционного слоя вкладышей подшипников Выбор материалов для пары трения является одним из наиболее сложных вопросов, как при проектировании двигателя, так и при его ...

0 комментариев


Наверх