Гомелькая научно-практическая конференция учащихся по естественно-научным направлениям "Поиск"
Государственное учреждение образования
"Гимназия имени Я. Купалы"
Учебно-исследовательская работа
Фигуры постоянной ширины. Треугольник Рело
Ученика 11 класса
Гимназии имени Я.Купалы
Кутуева Владимира Вячеславовича
Научный руководитель – учитель
математики высшей категории
Гимназии имени Я.Купалы
Чак Елена Николаевна
Мозырь
Оглавление
Введение
1. Диаметр фигуры
2. Фигуры постоянной ширины
3. Кривые постоянной ширины и их свойства
4. Треугольник Рело
4.1 Исторические сведения
4.2 Очертание четырёхугольника
4.3 Движение вершины и центра треугольника Рело
4.4 Площадь треугольника Рело
5. Применение треугольника Рело
5.1 Применение в некоторых механических устройствах
5.2 Применение в автомобильных двигателях
5.3 Применение альтернативных видов топлива РПД
5.4 Применение треугольника Рело в грейферном механизме в кинопроекторах
Заключение
Литература
Введение
Вопрос рассмотрения и исследования характерных точек и линий треугольников возникла, как из научного любопытства, так и из чисто практических целей. Если в древние времена наиболее широко применялся на практике прямоугольный треугольник Пифагора, то в наше время наибольший интерес вызывают необычные свойства треугольника Рело (Reuleaux Franz, 1829–1905).
Моя работа посвящена рассмотрению основных свойств фигур постоянной ширины. Вообще, мало кто знает, что такое диаметр, ширина фигуры. Может показаться, что круг является единственной выпуклой фигурой, у которой ширина в любом направлении одна и та же: она равна диаметру круга. Однако это не так: существует множество фигур постоянной ширины, т.е. таких выпуклых фигур, у которых во всех направлениях ширина одинакова. Простейшим примером является треугольник Рело. В своей работе я доказываю, что из всех фигур постоянной ширины треугольник Рело имеет наименьшую площадь.
Цель моей работы - изучить основные свойства фигур постоянной ширины, историю изобретения, рассмотреть области применения фигур постоянной ширины и изучить их свойства, доказать, что из всех фигур постоянной ширины треугольник Рело имеет наименьшую площадь.
Для этого поставлены следующие задачи.
Ø Познакомиться с историей изобретения;
Ø Рассмотреть и изучить свойства фигур постоянной ширины;
Ø Доказать, что из всех фигур постоянной ширины треугольник Рело имеет наименьшую площадь;
Ø Выявить и рассмотреть открытые проблемы и задачи, связанные с треугольником Рело;
Ø Выяснить области применения треугольника Рело.
Для реализации цели и задач исследования я использовал следующие методы: Теоретический анализ литературы по исследуемой теме. Доказательство, что из всех фигур постоянной ширины треугольник Рело имеет наименьшую площадь. Рассмотреть практическое техническое применение фигур постоянной ширины.
Теперь подробнее о треугольнике Рело. У этой фигуры есть общие свойства с кругом, но присутствуют и свои, например, очертание четырёхугольника. Траектории движения точки на окружности и точки на вершине треугольника Рело различны, хотя у обеих присутствует циклоида. Траектория геометрического центра треугольника также не прямая, а трохоида.
Треугольник Рело нашёл своё применение в сверле Уаттса, высверливающем квадратное отверстие, в грейферном механизме первого кинопроектора. На основе треугольника Рело Ф. Ванкель сконструировал роторно-поршневой двигатель. Этот двигатель обладает множеством преимуществ перед обычным двигателем внутреннего сгорания, хотя есть и свои минусы. Первый автомобиль с этим двигателем выпустили (NSU Prince) выпустили в середине 60-х годов, а сейчас роторно-поршневой двигатель устанавливают на некоторые модели Mazda. В СССР тоже разрабатывали роторно-поршневые двигатели, но у нас они не получили развития по многим причинам. В Англии имеет форму кривой постоянной ширины, построенной на семиугольнике.
Рассмотрим круг диаметра d. Расстояние между любыми двумя точками М и N этого круга (рис.1) не превосходит d. В то же время можно найти две точки А и В нашего круга, удаленные друг от друга в точности на расстояние d.
Рассмотрим теперь вместо круга какую-нибудь другую фигуру. Что можно назвать "диаметром" этой фигуры?
Сказанное выше наводит на мысль назвать диаметром фигуры наибольшее из расстояний между ее точками. Иначе говоря, диаметром фигуры F (рис. 2) называется такое расстояние d, что, во-первых, расстояние между любыми двумя точками М и N фигуры не превосходит d, и, во-вторых, можно отыскать в фигуре F хотя бы одну пару точек А, В, расстояние между которыми в точности равно d.
Пусть, например, фигура F представляет собой полукруг (рис.3).
Обозначим через А и В концы ограничивающей его полуокружности. Тогда ясно, что диаметром фигуры F является длина отрезка АВ. Вообще, если фигура F представляет собой сегмент, ограниченный дугой l и хордой а, то в случае, когда дуга l не превосходит полуокружности, диаметр фигуры F равен а (т.е. длине хорды); в случае же, когда дуга l больше полуокружности, диаметр фигуры F совпадает с диаметром всего круга.
Понятно, что если F представляет собой многоугольник, то его диаметром является наибольшее из расстояний между вершинами. В частности, диаметр любого треугольника равен длине его наибольшей стороны. Приведенное определение диаметра фигуры неявно предполагает, что каждая рассматриваемая "фигура" представляет собой замкнутое множество (т.е. к фигуре причисляются все ее граничные точки). Например, если F — открытый круг диаметра d (т.е. круг, к которому не причисляются точки ограничивающей его окружности), то точная верхняя грань расстояний между двумя точками фигуры F равна d; однако в этом случае не существует двух точек фигуры F, расстояние между которыми в точности равно d. Если же мы причислим к фигуре F все граничные точки (т.е. будем рассматривать замкнутый круг), то эта верхняя грань будет достигаться: найдутся две точки А и В, расстояние между которыми равно d.
Пусть F — ограниченная выпуклая фигура и l — некоторая прямая. Проведем к фигуре F две опорные прямые, параллельные l (опорная прямая — прямая, имеющая хотя бы одну общую точку с фигурой F и вся фигура F расположена по одну сторону от l).
Расстояние h между этими двумя опорными прямыми называется шириной фигуры F в направлении l.
Нетрудно заключить, что высота равностороннего треугольника является его наименьшей шириной, а его сторона — наибольшей шириной. У круга ширина в любом направлении одна и та же: она равна диаметру круга.
Существует бесконечное множество фигур постоянной ширины, т.е. таких выпуклых фигур, у которых во всех направлениях ширина одинакова. Простейшим примером такой фигуры является треугольник Релло, изображенный на рис.6. Он представляет собой пересечение трех кругов радиуса h, центры которых находятся в вершинах равностороннего треугольника со стороной h.
Вообще, если F — правильный многоугольник с нечетным числом вершин и h — длина наибольшей из его диагоналей, то, соединяя каждые две соседние его вершины дугой окружности радиуса h с центром в противоположной вершине, мы получаем фигуру постоянной ширины h (рис.7).
Это построение проходит и в том случае, если многоугольник диаметра h с нечетным числом сторон является правильным, но из каждой его вершины исходят две диагонали длины h (рис.8).
Прежде всего, отметим, что диаметр фигуры постоянной ширины равен ее ширине: d=h. Через каждую граничную точку фигуры постоянной ширины d проходит хотя бы один диаметр этой фигуры (т.е. хорда, имеющая длину d). Границу фигуры постоянной ширины d нельзя разбить на две части меньшего диаметра.
Всякие два диаметра фигуры постоянной ширины всегда пересекаются (либо внутри фигуры, либо на ее границе, рис.8, 9). При этом, если два диаметра АВ и АС имеют общую граничную точку А, то дуга ВС радиуса d с центром в точке А целиком лежит на границе фигуры (рис.10).
Наконец, отметим, что если F — фигура постоянной ширины и АВ — ее диаметр, то прямые l1 и l2, проходящие через точки А и В и перпендикулярные к отрезку АВ, являются опорными прямыми фигуры F (рис.11).
3. Кривые постоянной ширины и их свойстваНаши предки использовали колесо, круглые брёвна одинакового диаметра для перемещения огромных камней, плит, массивных скульптур, на которые ставили плоскую платформу с грузом. Такой способ возможен потому, что круг – фигура постоянной ширины. Но круг не единственная фигура постоянной ширины. Более того, таких фигур бесконечно много. Это могут быть симметричные фигуры, построенные на основе правильных многоугольников, так и несимметричные фигуры, одна из них – треугольник Рело.
Все кривые данной постоянной ширины имеют одинаковый периметр. Окружность и треугольник Рело выделяются из всего набора кривых данной ширины своими экстремальными свойствами. Окружность ограничивает максимальную площадь, а треугольник Рело — минимальную в классе кривых данной ширины.
Ещё одно из удивительных свойств состоит в том, что все кривые одной им той же ширины имеют одинаковые периметры. Поскольку окружность принадлежит к числу кривых постоянной ширины, периметр любой кривой постоянной ширины d равен длине окружности диаметра d, то есть величине d. Представим себе каток постоянной ширины d, который катится без проскальзывания между параллельными прямыми a и b. Будем считать прямую a неподвижной, а прямую b движущейся с постоянной скоростью v. Сделав один оборот, каток переместится на расстояние l, где l – длина кривой, которая ограничивает сечение катка, т.е. длина кривой постоянной ширины d. Время полного оборота катка обозначим буквой t. За это время прямая b переместится по отношению к катку также на расстояние l и, значит, по отношению к неподвижной прямой a - на расстояние 2l, поэтому 2l = vt. С другой стороны, в каждый момент времени движение катка можно рассматривать как вращение вокруг точки, в которой каток опирается на прямую a. Если угловая скорость вращения катка равна ω, то скорость v движения прямой b, равна ωd. Итак, 2l = ωdt. Но ωt представляет собой угол, на который повернулся каток за время t, т.е. ωt = 2. Таким образом, 2l = 2d,l = d.
Несимметричные кривые представляют собой почти произвольные фигуры. Рассмотрим какой-либо набор пересекающихся прямых. Рассмотрим один из секторов. Проведём дугу окружности произвольного радиуса с центром в точке пересечения прямых, определяющих этот сектор. Возьмём соседний сектор, и с центром в точке пересечения прямых, определяющих его, проведём окружность. Радиус подбирается такой, чтобы уже нарисованный кусок кривой непрерывно продолжался. Будем так делать дальше. Оказывается, при таком построении кривая замкнётся и будет иметь постоянную ширину.
Также существуют трёхмерные аналоги кривых постоянной ширины – тела постоянной ширины. Сфера — не единственное тело, которое может вращаться внутри куба, все время касаясь всех шести его граней. Этим же свойством обладают все тела постоянной ширины. Простейшим примером несферического тела постоянной ширины может служить тело, образующееся при вращении треугольника Рело вокруг одной из его осей симметрии. Существует бесконечно много и других тел постоянной ширины. Те из них, которые имеют наименьший объем при данной ширине, получаются из правильного тетраэдра, так же как треугольник Рело — из равностороннего треугольника (рис.7).
Рис.12 Тела постоянной ширины.
... меньше 180° (см. рисунок). Выпуклый многоугольник всегда расположен в одной полуплоскости относительно каждой прямой, проходящей через его сторону. Выпуклыми фигурами являются: треугольник, параллелограмм, трапеция, круг, эллипс (рис.1). На рис.2 приведены примеры невыпуклых фигур. Имеются полезные утверждения, которые ...
... характеристику основных знаний умений и навыков по данной специальности. Тифлопедагог дошкольного образовательного учреждения является ведущим специалистом, координирующим и направляющим коррекционно-педагогическую работу. В общем коррекционно-педагогическом процессе, осуществляемом в детском саду для детей с нарушением зрения, специальные коррекционные занятия тифлопедагога играют роль про ...
... контактов обеспечивается выбором их материала и конструкции при использовании одноступенчатой системы. В заключение отметим, что в настоящее время начинают широко применяться электрические аппараты с герметизированными контактами и контактами, работающими в глубоком вакууме. Жидкометаллические контакты? Наиболее характерные недостатки твердометаллических контактов следующие: 1. С ростом ...
... английский, можно ли сказать, что проблема евроцентризма ушла в прошлое? Очевидно, многое еще остается выяснить в наших подходах к мировой истории. РАЗДЕЛ 2. ТЕОРИЯ ЯДРА Глава 1 Центр и периферия цивилизации § 1. А. Тойнби О ТЕРРИТОРИАЛЬНОМ РАСПРОСТРАНЕНИИ КАК КРИТЕРИИ РАЗВИТИЯ ЦИВИЛИЗАЦИИ Рост цивилизации по своей природе является восходящим движением. Цивилизации развиваются ...
0 комментариев