3. Стаціонарні випадкові процеси
Випадковий процес Х(t) називають стаціонарним у вузькому змісті, якщо
F(x1, …, xn; t1, …, tn) = F(x1, …, xn; t1+∆, …, tn+∆)
При довільних
n≥1, x1, …, xn, t1, …, tn; ∆; t1 ? T, ti + ∆ ? T...
Тут F(x1, …, xn; t1, …, tn) – n-мірна функція розподілу випадкового процесу Х(t).
Випадковий процес Х(t) називають стаціонарним у широкому змісті, якщо
m(t) = m(t + ?), K(t, t') = K(t + ?, t' + ?)
(t ? T, t' ? T, t + ?? T), t' + ?? T)
Очевидно, що зі стаціонарності у вузькому змісті треба стаціонарність у широкому змісті.
З формул:
m(t) = m(t + ?), K(t, t') = K(t + ?, t' + ?)
(t ? T, t' ? T, t + ?? T), t' + ?? T)
Треба, що для процесу, стаціонарного в широкому змісті, можна записати
m (t) = mx(0) = const;
D (t) = K(t, t) = K(0,0) = const;
K(t, t') = K(t - t', 0) = K (0, t' - t)
Таким чином, для процесу, стаціонарного в широкому змісті, математичне очікування й дисперсія не залежать від часу, а K(t, t') представляє собою функцію виду:
K(t, t') = k(?) = k(-?), ? = t' - t.
Видно, що k(?) - парна функція, при цьому
K(0) = В = σ2; |k(τ)| ≤ k(0); ∑ ∑ άi αj k(ti - tj) ≥ 0
Тут D - дисперсія стаціонарного процесу
Х(t), αi (I = 1, n) – довільні числа.
Перша рівність системи
K(0) = В = σ2; |k(τ)| ≤ k(0); ∑ ∑ άi αj k(ti - tj) ≥ 0
треба з рівняння K(t, t') = k(?) = k(-?), ? = t' - t. Перша рівність
K(0) = В = σ2; |k(τ)| ≤ k(0); ∑ ∑ άi αj k(ti - tj) ≥ 0 - простий наслідок нерівності Шварца для перетинів X(t), X(t') стаціонарного випадкового процесу X(t). Остання нерівність:
K(0) = В = σ2; |k(τ)| ≤ k(0); ∑ ∑ άi αj k(ti - tj) ≥ 0
Одержують у такий спосіб:
∑ ∑ αi αj k(ti - tj) = ∑ ∑ K(ti, tj)αi αj = ∑ ∑ M[(αiXi)(αjXj)] = M[(∑ αiXi)2] ≥0
З огляду на формулу кореляційної функції похідній dX(t)/dt випадкового процесу, для стаціонарної випадкової функції X(t) одержимо
K1(t, t’) = M[(dX(t)/dt)*(dX(t’)/dt’)] = δ2K(t, t’) / δtδt’ = δ2k(t’ - t) / δt?t'
Оскільки
?k(t' - t) / ?t = (?k(?) / ??) * (?? / ??) = - ?k(?) / ??,
δ2k(t’ - t) / δtδt’ = - (δ2 k(τ) / δτ2) * (δτ / δt’) = - (δ2 k(τ) / δτ2)
те K1(t, t’) = k1(τ) = - (δ2 k(τ) / δτ2), τ = t' - t.
Тут K1(t, t’) і k1(τ) – кореляційна функція першій похідній стаціонарного випадкового процесу X(t).
Для n-й похідній стаціонарного випадкового процесу формула кореляційної функції має вигляд:
Kn(τ) = (-1)n * (δ2n *k(τ) / δτ2n)
Теорема. Стаціонарний випадковий процес X(t) з кореляційною функцією k(?) безперервний у середньому квадратичному у крапці t ? T тоді й тільки тоді, коли
Lim k(?) = k(0)
Для доказу запишемо очевидний ланцюжок рівностей:
M [|X(t+τ)-X(T)|2] = M[|X(t)|2] – 2M[|X(t+τ)X(t)|] + M[X(t)2] =
= 2D-2k(?) = 2[k(0)-k(?)].
Звідси очевидно, що умова безперервності в середньому квадратичному процесу X(t) у крапці t ? T
Lim M[|X(t+τ) – X(t)|2] = 0
Має місце тоді й тільки тоді, коли виконується Lim k(?) = k(0)
Теорема. Якщо кореляційна функція k(τ) стаціонарного випадкового процесу X(t) безперервна в середньому квадратичному у крапці τ=0, то вона безперервна в середньому квадратичному у будь-якій крапці τ ? R1.
Для доказу запишемо очевидні рівності:
k(?+??)-k(?) = M[X(t+?+??)X(t)] - M[X(t+?)X(t)] =
= M{X(t)[X(t+?+??) - X(t+?)]}
Потім, застосовуючи нерівність Шварца до співмножників у фігурній дужці й з огляду на співвідношення:
K(t, t') = k(?) = k(-?), ? = t' - t.
K(0) = В = σ2; |k(τ)| ≤ k(0); ∑ ∑ άi αj k(ti - tj) ≥ 0
Одержимо:
0 ≤ [k(τ+∆τ)-k(τ)]2≤ M[X(t)2]M[|X(t+τ+∆τ)-X(t+τ)|2] =
= 2D[D-k(??)].
Переходячи до межі при ??>0 і беручи до уваги умова теореми про безперервність k(?) у крапці ?=0, а також перша рівність системи
K(0) = В = σ2 , знайдемо
Lim k(?+??) = k(?)
Оскільки тут ? - довільне число, теорему варто вважати доведеної.
... ії Метод конденсації полягає в утворенні нерозчинних сполук за допомогою реакцій обміну, гідролізу, відновлення, окислення. Здійснюючи ці реакції в сильно розбавлених розчинах і з деяким надлишком одного з компонентів, дістають не осади, а колоїдні розчини. До конденсаційних методів належить також добування ліозолів за допомогою заміни розчинника. Наприклад, колоїдний розчин каніфолі можна ...
... іжності між емпіричними і теоретичними частотами розподілу не можуть бути випадковими і припущення про близькість емпіричного розподілу до нормального повинна бути спростоване. Розділ 3. Кореляційний аналіз виробництва льоноволокна Одним з найважливіших завдань статистики є вивчення об'єктивно існуючих зв'язків між явищами. При дослідженні таких зв'язків з'ясовуються причинно-наслідкові ві ...
... –2007 навчальний рік) була визначена сфера і проблема дослідження; вивчалася педагогічна, методична література з даної теми; аналізувалася робота вчителів початкових класів у галузі методики розв’язування простих задач, що розкривають конкретний зміст арифметичних дій, шляхом диференційованого навчання; формулювалася гіпотеза та завдання дослідження. В процесі експериментального етапу (2007–2008 ...
... без опанування системи понять цієї науки. Це великою мірою стосується математики. Найважливішим завданням викладання математики є формування в учнів правильних математичних понять. 1.3. Суттєві і несуттєві властивості понять. Прийоми їх виявлення. Засвоєння математичних понять відбувається у процесі аналітико – синтетичної діяльності учнів, спрямованої на виявлення істотних загальних ...
0 комментариев