4. Ергодична властивість стаціонарних випадкових процесів

Нехай Х(t) - стаціонарний випадковий процес на відрізку часу [0,T] з характеристиками

M[X(t)] = 0, K(t, t') = M[X(t)X(t')] = k(?),

? = t' - t, (t, t') ? T?T.

Ергодична властивість стаціонарного випадкового процесу полягає в тім, що по досить тривалій реалізації процесу можна судити про його математичне очікування, дисперсію, кореляційній функції.

Більш строго стаціонарний випадковий процес Х(t) будемо називати ергодичним по математичному очікуванню, якщо

Lim M {|(1/ T)∫ X(t)dt|2} = 0

Теорема

Стаціонарний випадковий процес Х(t) з характеристиками:

M[X(t)] = 0, K(t, t') = M[X(t)X(t')] = k(?),

? = t' - t, (t, t') ? T?T

є ергодичним по математичному очікуванню тоді й тільки тоді, коли

Lim (2/ T) ? k(?) (1 - ?/t)d? = 0.

Для доказу, мабуть, досить переконатися, що справедливо рівність

M{(1/ T) ∫X(t)dt|2} = (2/ T) ∫ k(?) (1 - ?/t)d?


Запишемо очевидні співвідношення

C = M {|(1/ T) ) ∫X(t)dt|2} = (1/ T2) ∫ ? k(t' - t)dt'dt = (1/T) ? dt ? k(t' - t)dt'.

Думаючи тут ? = t' - t, d? = dt' і з огляду на умови (t' = T) > (? = T - t),

(t' = 0)>(? = -t), одержимо

З = (1/T2) ∫ dt ∫ k(τ)dτ = (1/T2) ∫ dt ∫ k(τ)dτ + (1/T2) ∫ dt ? k(?)d? =

= -(1/T2) ∫ dt ∫ k(τ)dτ - (1/T2) ∫ dt ? k(?)d?

Думаючи в першому й другому доданках правої частини цієї рівності відповідно ? = -?', d? = -d?', ? = T-?', d? = -d?', знайдемо

З = (1/T2) ∫ dt ∫ k(τ)dτ + (1/T2) ∫ dt ? k(T - ?)d?

Застосовуючи формулу Дирихле для подвійних інтегралів, запишемо

З = (1/T2) ∫ dt ∫ k(τ)dτ + (1/T2) ∫ dt ∫ k(T - τ)dτ = (1/T2) ∫ (T - τ) k(τ)dτ + (1/T2) ∫ ?k (T - ?)d?

У другому доданку правої частини можна покласти ?' = T-?, d? = -d?', після чого будемо мати

З = (1/Т2) ∫ (Т - τ) k(τ)dτ – (1/T2) ∫ (T - ?) k(?)d? = 2/T ? (1- (?/T)) k(?)d?

Звідси й з визначення констант видно, що рівність

M{(1/ T) ∫X(t)dt|2} = (2/ T) ∫ k(?) (1 - ?/t)d?


Справедливо.

Теорема

Якщо кореляційна функція k(?) стаціонарного випадкового процесу X(t) задовольняє умові

Lim (1/T) ? |k(?)| dt = 0

Те X(t) є ергодичним по математичному очікуванню.

Дійсно, з огляду на співвідношення

M{(1/ T) ∫X(t)dt|2} = (2/ T) ∫ k(?) (1 - ?/t)d?

Можна записати

0 ? (2/Т) ? (1 - ?/t) k(?)d? ? (2/T) ? (1- ?/t) |k(?)|d? ? (1/T) ? |k(?)|d?

Звідси видно, що якщо виконано умову, те

Lim (2/T) ? (1 - ?/T) k(?)d? = 0

Тепер, беручи до уваги рівність

З = (1/Т2) ∫ (Т - τ) k(τ)dτ – (1/T2) ∫ (T - ?) k(?)d? = 2/T ? (1- (?/T)) k(?)d?

І умова Lim M {|(1/ T)∫ X(t)dt|2} = 0

Ергодичності по математичному очікуванню стаціонарного випадкового процесу X(t), знаходимо, що необхідне доведено.

Теорема.

Якщо кореляційна функція k(?) стаціонарного випадкового процесу

X(t) інтегрувальна й необмежено убуває при ? > ?, тобто виконується умова

При довільному ? > 0, то X(t) - ергодичний по математичному очікуванню стаціонарний випадковий процес.

Дійсно, з огляду на вираження

Для Т≥Т0 маємо

(1/T) ∫ |k(τ)|dτ = (1/T)[ ∫ |k(τ)|dτ + ∫ |k(τ)|dτ ≤ (1/T) ∫ |k(τ)|dτ ε(1 – T1/T).

Переходячи до межі при Т > ?, знайдемо

0 ? lim ? |k(?)|d? = ?.

Оскільки тут ? > 0 - довільна, скільки завгодно мала величина, то виконується умова ергодичності по математичному очікуванню. Оскільки це треба з умови. Про необмежене убування k(?), те теорему варто вважати доведеної. Доведені теореми встановлюють конструктивні ознаки ергодичності стаціонарних випадкових процесів.

Нехай

X(t) = m + X(t), m=const.

Тоді M[X(T)] = m, і якщо X(t) - ергодичний стаціонарний випадковий процес, то умова ергодичності Lim M {|(1/ T)∫ X(t)dt|2} = 0 після нескладних перетворень можна представити у вигляді

Lim M{[(1/T) ∫ X(t)dt – m]2} = 0

Звідси треба, що якщо X(t) - ергодичний по математичному очікуванню стаціонарний випадковий процес, то математичне очікування процесу X(t) = m + X(t) приблизно може бути обчислене по формулі


M = (1/T) ? x(t)dt

Тут Т - досить тривалий проміжок часу;

x(t) - реалізація процесу X(t) на відрізку часу [0, Т].

Можна розглядати ергодичність стаціонарного випадкового процесу X(t) по кореляційній функції.

Стаціонарний випадковий процес X(t) називається ергодичним по кореляційній функції, якщо

Lim M {[ (1/T) ∫ X(t) X(t + τ)dt – k(τ)]2]} = 0

Звідси треба, що для ергодичного по кореляційній функції стаціонарного випадкового процесу X(t) можна покласти

k (?) = (1/T) ? x(t)x(t + ?)dt

при досить великому Т.

Виявляється, умова обмеженості k(?) досить для ергодичності по кореляційній функції стаціонарного нормально розподіленого процесу X(t).

Помітимо, випадковий процес називається нормально розподіленим, якщо будь-яка його функція розподілу є нормальною.

Необхідною й достатньою умовою ергодичності стаціонарного нормально розподіленого випадкового процесу є співвідношення

τ0 : lim (1/T) ∫ [k(τ)2 + k(τ + τ0) k(τ – τ0)] (1 – τ/T)d? = 0


Література

1.Кремер М.Ш. Теорія ймовірностей і математична статистика. – К., 2004

2.Кожевников Ю.В. Теорія ймовірностей і математична статистика. – К., 2005

3.Гнеденко Б.Д. Курс теорії ймовірностей. – К., 2005


Информация о работе «Випадковий процес в математиці»
Раздел: Математика
Количество знаков с пробелами: 28357
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
19748
0
2

... ії   Метод конденсації полягає в утворенні нерозчинних сполук за допомогою реакцій обміну, гідролізу, відновлення, окислення. Здійснюючи ці реакції в сильно розбавлених розчинах і з деяким надлишком одного з компонентів, дістають не осади, а колоїдні розчини. До конденсаційних методів належить також добування ліозолів за допомогою заміни розчинника. Наприклад, колоїдний розчин каніфолі можна ...

Скачать
66342
16
14

... іжності між емпіричними і теоретичними частотами розподілу не можуть бути випадковими і припущення про близькість емпіричного розподілу до нормального повинна бути спростоване. Розділ 3. Кореляційний аналіз виробництва льоноволокна Одним з найважливіших завдань статистики є вивчення об'єктивно існуючих зв'язків між явищами. При дослідженні таких зв'язків з'ясовуються причинно-наслідкові ві ...

Скачать
111172
0
2

... –2007 навчальний рік) була визначена сфера і проблема дослідження; вивчалася педагогічна, методична література з даної теми; аналізувалася робота вчителів початкових класів у галузі методики розв’язування простих задач, що розкривають конкретний зміст арифметичних дій, шляхом диференційованого навчання; формулювалася гіпотеза та завдання дослідження. В процесі експериментального етапу (2007–2008 ...

Скачать
104386
0
9

... без опану­вання системи понять цієї науки. Це великою мірою сто­сується математики. Найважливішим завданням викладання математики є формування в учнів правильних математичних понять. 1.3. Суттєві і несуттєві властивості понять. Прийоми їх виявлення.   Засвоєння математичних понять відбувається у процесі аналітико – синтетичної діяльності учнів, спрямованої на виявлення істотних загальних ...

0 комментариев


Наверх