3.6 Расчет и конструирование базы подкрановой ветви

Для составления расчетных комбинаций усилий подкрановой и шатровой ветвей, воспользуемся таблицей 3.

Расчетная комбинация усилий для подкрановой ветви в сечении 1-1:

;

.

Расчетная комбинация усилий для шатровой ветви в сечении 1-1:

;

.

Определяем усилие в ветвях колонны в сечении 1-1:

.

.

Выполняем расчет подкрановой ветви, т.к. усилие большее.

Рисунок 25 – План базы

Конструктивно определение ширины листа:

принимаем лист шириной 300 мм.

Принимаем бетон для фундамента класса B15, у которого .

Из условия работы на смятие бетона под плитой базы, требуемая длина плиты определится по формуле:

,

где

.

Принимаем

 ;

.

Среднее напряжение в бетоне под плитой:

.

Определяем изгибающие моменты на отдельных участках плиты. Разбиваем плиту на участки и определяем размеры участков.

Участок 1 – консольный свес: ;

.

Участок 2 – консольный свес: ;

.

Участок 3 – плита, опертая на четыре стороны:

;

;

 расчетный момент определяется как для однопролетной балочной плиты:

.

Принимаем для расчета максимальный момент: .

Требуемая толщина плиты:

.

Принимаем лист толщиной 16 мм (2 мм – припуск на фрезеровку).

Высоту траверсы определяем из условия размещения шва крепления траверсы к ветви колонны. В запас прочности все усилие в ветви передаем на траверсы через четыре угловых шва.

Предварительно принимаем .

.

Принимаем высоту траверсы равной 26 см.

Проверяем прочность горизонтального сварного шва.

;

, т.е. условие выполняется, прочность горизонтального сварного шва обеспечена.

3.7 Расчет анкерных болтов базы подкрановой ветви

Расчетные усилия из таблицы 3:

N=-319.208 кН M(-)=-208.479 кН·м.

Усилия приходящиеся на систему анкерных болтов соответствующей ветви:

.

Предварительно принимаем 4 анкерных болта для каждой ветви.

.

Требуемая площадь сечения болта определится по формуле:


,

где  - для стали Вст3кп2.

Уменьшаем количество болтов до двух, и принимаем 2 болта Ø 30 мм.

Тогда площадь будет равна:

.


Информация о работе «Стальной каркас промышленного здания»
Раздел: Строительство
Количество знаков с пробелами: 37472
Количество таблиц: 3
Количество изображений: 28

Похожие работы

Скачать
24634
14
0

... элементов на здание. Подсчет количества конструктивных элементов произведен по плану здания, представленному на рисунке. Таблица 1.1. Спецификация сборных железобетонных элементов каркаса Элемент Марка элемента Кол-во на здание,шт Объем,м3 Масса,т на 1 элем. общий на 1 элем. общая Колонна крайнего ряда К-96-12 14 4,14 57,96 10,4 145,6 Колонна среднего ряда ...

Скачать
50418
8
12

... к нормативному значению веса снегового покрытия. Расчетная погонная снеговая нагрузка на ригель рамы составит: Qds = 0,7∙1∙25/2∙12∙1,5 = 157,5 кН. При расчете одноэтажных производственных зданий высотой до 36 м при отношении высоты к пролету менее 1,5, размещаемых в местностях типов А и В, учитывается только статическая составляющая ветровой нагрузки, соответствующая ...

Скачать
6742
0
0

... исходными материалами и продуктами производства, которые и создают основные предпосылки для проектирования промышленных зданий, которые идеально впишутся в своеобразные решения планировки территори, их застройки и архитектурно-пространственной композиции. ПРОИЗВОДСТВЕННЫЕ ЗДАНИЯ ИЗ ЛЕГКИХ МЕТАЛЛИЧЕСКИХ КОНСТРУКЦИЙ ТИПА КАНСК Стальные рамные конструкции из прокатных широкополочных и сварных ...

Скачать
129358
0
0

... с металлическим каркасом является «Либер­ти Мьючиал Иншуренс билдинг» (1908 г.).   Начало каркасного строительства в Европе — во Франции, Бельгии, Западной Швейцарии (1890—1930гг.) Франция и Бельгия были первыми евро­пейскими странами, в которых получили применение конструкции стального каркаса многоэтажных зданий. Это не случайно — материальные и психологические предпосылки были здесь ...

0 комментариев


Наверх