3.6 Расчет и конструирование базы подкрановой ветви
Для составления расчетных комбинаций усилий подкрановой и шатровой ветвей, воспользуемся таблицей 3.
Расчетная комбинация усилий для подкрановой ветви в сечении 1-1:
;
.
Расчетная комбинация усилий для шатровой ветви в сечении 1-1:
;
.
Определяем усилие в ветвях колонны в сечении 1-1:
.
.
Выполняем расчет подкрановой ветви, т.к. усилие большее.
Рисунок 25 – План базы
Конструктивно определение ширины листа:
принимаем лист шириной 300 мм.
Принимаем бетон для фундамента класса B15, у которого .
Из условия работы на смятие бетона под плитой базы, требуемая длина плиты определится по формуле:
,
где
.
Принимаем
;
.
Среднее напряжение в бетоне под плитой:
.
Определяем изгибающие моменты на отдельных участках плиты. Разбиваем плиту на участки и определяем размеры участков.
Участок 1 – консольный свес: ;
.
Участок 2 – консольный свес: ;
.
Участок 3 – плита, опертая на четыре стороны:
;
;
расчетный момент определяется как для однопролетной балочной плиты:
.
Принимаем для расчета максимальный момент: .
Требуемая толщина плиты:
.
Принимаем лист толщиной 16 мм (2 мм – припуск на фрезеровку).
Высоту траверсы определяем из условия размещения шва крепления траверсы к ветви колонны. В запас прочности все усилие в ветви передаем на траверсы через четыре угловых шва.
Предварительно принимаем .
.
Принимаем высоту траверсы равной 26 см.
Проверяем прочность горизонтального сварного шва.
;
, т.е. условие выполняется, прочность горизонтального сварного шва обеспечена.
3.7 Расчет анкерных болтов базы подкрановой ветви
Расчетные усилия из таблицы 3:
N=-319.208 кН M(-)=-208.479 кН·м.
Усилия приходящиеся на систему анкерных болтов соответствующей ветви:
.
Предварительно принимаем 4 анкерных болта для каждой ветви.
.
Требуемая площадь сечения болта определится по формуле:
,
где - для стали Вст3кп2.
Уменьшаем количество болтов до двух, и принимаем 2 болта Ø 30 мм.
Тогда площадь будет равна:
.
... элементов на здание. Подсчет количества конструктивных элементов произведен по плану здания, представленному на рисунке. Таблица 1.1. Спецификация сборных железобетонных элементов каркаса Элемент Марка элемента Кол-во на здание,шт Объем,м3 Масса,т на 1 элем. общий на 1 элем. общая Колонна крайнего ряда К-96-12 14 4,14 57,96 10,4 145,6 Колонна среднего ряда ...
... к нормативному значению веса снегового покрытия. Расчетная погонная снеговая нагрузка на ригель рамы составит: Qds = 0,7∙1∙25/2∙12∙1,5 = 157,5 кН. При расчете одноэтажных производственных зданий высотой до 36 м при отношении высоты к пролету менее 1,5, размещаемых в местностях типов А и В, учитывается только статическая составляющая ветровой нагрузки, соответствующая ...
... исходными материалами и продуктами производства, которые и создают основные предпосылки для проектирования промышленных зданий, которые идеально впишутся в своеобразные решения планировки территори, их застройки и архитектурно-пространственной композиции. ПРОИЗВОДСТВЕННЫЕ ЗДАНИЯ ИЗ ЛЕГКИХ МЕТАЛЛИЧЕСКИХ КОНСТРУКЦИЙ ТИПА КАНСК Стальные рамные конструкции из прокатных широкополочных и сварных ...
... с металлическим каркасом является «Либерти Мьючиал Иншуренс билдинг» (1908 г.). Начало каркасного строительства в Европе — во Франции, Бельгии, Западной Швейцарии (1890—1930гг.) Франция и Бельгия были первыми европейскими странами, в которых получили применение конструкции стального каркаса многоэтажных зданий. Это не случайно — материальные и психологические предпосылки были здесь ...
0 комментариев