2.2.2 Снеговая нагрузка
Погонная снеговая нагрузка на ригель рамы равна:
,
где - из таблицы 4 /3/.
Рисунок 14 – Схема к расчету на снеговую нагрузку
2.2.3 Ветровая нагрузка
Погонная фактическая, активная составляющая нагрузка на стойку рамы равна:
,
где - коэффициент надежности по ветровой нагрузки;
- нормативное значение ветрового давления, определяется по таблице 5 /3/ в зависимости от ветрового района;
с - аэродинамический коэффициент, определяемый по приложению 4 /3/ для активной и пассивной составляющих;
- коэффициент, учитывающий изменение ветрового давления по высоте, определяется по таблице 6 /3/, в зависимости от типа местности.
Выбираем тип местности В — городские территории, лесные массивы и другие местности, равномерно покрытые препятствиями высотой более 10 м.
Рисунок 15 – Схема к расчету на ветровую нагрузку
Для заданного типа местности В с учетом коэффициента k из таблицы 6 /3/ получаем следующее значение ветрового давления по высоте здания:
- на высоте до 5 м;
- на высоте 10 м;
- на высоте 20 м.
Согласно рисунку 15, вычислим значения нормативного давления на отметках верха колонн и верха панели:
- на отметке 13,80:
;
- на отметке 17,68:
.
Для удобства фактическую линейную нагрузку (в виде ломанной прямой) можно заменить эквивалентной, равномерно распределенной по всей высоте.
Найдем площади эпюр:
;
;
.
Активная составляющая нагрузки:
.
Погонная фактическая, пассивная составляющая нагрузка на стойку рамы равна:
,
Значение ветрового давления по высоте здания:
- на высоте до 5 м;
- на высоте 10 м;
- на высоте 20 м.
- на отметке 13,80: ;
- на отметке 17,68: .
Найдем площади эпюр:
;
;
.
Пассивная составляющая нагрузки:
.
Ветровая нагрузка, действующая на участке от низа ригеля до наиболее высокой точки здания, заменяется сосредоточенной силой, приложенной в уровне низа ригеля рамы.
Рисунок 16– Схема к расчету на ветровую сосредоточенную нагрузку
Сосредоточенная активная нагрузка на стойку рамы:
.
Сосредоточенная пассивная нагрузка на стойку рамы:
.
2.2.4 Крановая нагрузка
I. Вертикальное давление крана на колонну
Предусматривается наличие двух кранов в пролете.
Рисунок 17– Схема к расчету на крановую нагрузку
Вертикальная нагрузка на подкрановые балки и колонны определяется от двух наиболее неблагоприятных по воздействию кранов.
Расчетное усилие , передаваемое на колонну колесами крана, можно определить по линии влияния опорных реакций подкрановых балок, при наиневыгоднейшем расположении кранов на балках:
,
где - коэффициент надежности для крановой нагрузки;
- коэффициент надежности для подкрановой балки;
- коэффициент сочетания, учитывающий вероятность появления двух кранов у опоры с максимальным грузом;
- нормативное давление на одно колесо крана, определяемое по приложению 1 /4/;
- координаты линии влияния;
- собственный вес подкрановой балки;
- это произведение в расчете не учитываем.
Рисунок 18 – К определению нагрузок на раму от мостовых кранов
По приложению 1 /4/ расстояние , ,
, где
Координаты линии влияния из рисунка 18 равны:
;
;
.
.
На другой ряд колонны также будут передаваться усилия, но значительно меньшее.
,
где - грузоподъемность крана;
- масса крана с тележкой, определяемая по приложению 1 /4/;
- количество колес с одной стороны.
.
II. Нагрузка от горизонтального торможения тележки крана с грузом
Расчетная горизонтальная сила Т, передаваемая подкрановыми балками на колонну от сил , определяется при том же положении мостовых кранов:
,
где - нормативная горизонтальная нагрузка на одно колесо крана
.
.
3 Расчет ступенчатой колонны
3.1 Статический расчет рамы выполнен с помощью программы “METAL”
Таблица 3 – Результаты статического расчета
... элементов на здание. Подсчет количества конструктивных элементов произведен по плану здания, представленному на рисунке. Таблица 1.1. Спецификация сборных железобетонных элементов каркаса Элемент Марка элемента Кол-во на здание,шт Объем,м3 Масса,т на 1 элем. общий на 1 элем. общая Колонна крайнего ряда К-96-12 14 4,14 57,96 10,4 145,6 Колонна среднего ряда ...
... к нормативному значению веса снегового покрытия. Расчетная погонная снеговая нагрузка на ригель рамы составит: Qds = 0,7∙1∙25/2∙12∙1,5 = 157,5 кН. При расчете одноэтажных производственных зданий высотой до 36 м при отношении высоты к пролету менее 1,5, размещаемых в местностях типов А и В, учитывается только статическая составляющая ветровой нагрузки, соответствующая ...
... исходными материалами и продуктами производства, которые и создают основные предпосылки для проектирования промышленных зданий, которые идеально впишутся в своеобразные решения планировки территори, их застройки и архитектурно-пространственной композиции. ПРОИЗВОДСТВЕННЫЕ ЗДАНИЯ ИЗ ЛЕГКИХ МЕТАЛЛИЧЕСКИХ КОНСТРУКЦИЙ ТИПА КАНСК Стальные рамные конструкции из прокатных широкополочных и сварных ...
... с металлическим каркасом является «Либерти Мьючиал Иншуренс билдинг» (1908 г.). Начало каркасного строительства в Европе — во Франции, Бельгии, Западной Швейцарии (1890—1930гг.) Франция и Бельгия были первыми европейскими странами, в которых получили применение конструкции стального каркаса многоэтажных зданий. Это не случайно — материальные и психологические предпосылки были здесь ...
0 комментариев