2. F(+¥)=1; F(-¥)=0; F(+¥)=P(x<¥)=1;

P(-¥<x<¥)=1; F(-¥)=0;

P(a£x<b)=P(x<b) - P(x<a)=Fx(b) - Fx(a).

Якщо функція розподілу в деякій точці x=а має неусувний розрив 1-го роду – стрибок на величину р, (рис. 7) то Р(x=а)=р.

Рисунок 7

Дійсно, розглянемо [а, b), b® a+0.

P(x=а)=.

Найбільш важливими типами випадкових величин є дискретні і неперервні випадкові величини, які будуть розглянуті більш докладно.


2 Дискретна випадкова величина Випадкова величина називається дискретною, якщо її можливі значення можна перенумерувати.

Нехай х12,…,хn – можливі значення дискретної випадкової величини в порядку зростання.

Випадкові події [x=x1], [x=x2], …[x=xn] утворять повну систему елементарних подій. При цьому

,

Закон розподілу дискретної випадкової величини можна задати таблицею (табл. 1) чи геометрично – точками на площині (xi, pi); або ламаною, що з'єднує ці точки та називається багатокутником розподілу (рис. 8):

Рисунок 8

Цьому закону розподілу є відповідною функція розподілу


Fx(x)=P(x<x)=

або

де

Її графік наведено на рис. 9

Рисунок 9

Як видно з рис. 9, функція розподілу дискретної випадкової величини є кусково неперервною. У точці хi вона зростає на величину . При цьому

.

3 Найважливіші закони розподілу дискретних випадкових величин

Біноміальний розподіл. Розглядається серія з n випробувань, у кожному з яких подія А відбувається або не відбувається. Ймовірність появи події А в кожному випробуванні постійна і не залежить від результатів інших випробувань. Це схема Бернуллі:

Р(А)=р; .

Як випадкову величину, яку позначимо , розглянемо кількість появ події А у n випробуваннях. Не важко перевірити, що ймовірність появи події  визначається формулою Бернуллі у вигляді

; (1)

де  – кількість сполучень з  елементів по  (1).

Відповідний цїй формулі закон розподілу випадкової величини називається біноміальним, тому що його коефіцієнти збігаються з коефіцієнтами членів розкладання бінома Ньютона (p+q)n (табл. 4).

Таблиця 4

xn

0 1 k n

pn

qn

npqn-1

pn

Розподіл Пуассона. Якщо в біноміальному розподілі випадкової величини кількість випробувань  і наслідків  дуже велика, знаходження ймовірностей за формулою Бернуллі (1) стає обтяжливим у зв’язку з необхідністю обчислення факторіалів великого порядку. У цьому випадку було отримано наслідки формули Бернуллі, один з яких полягає у наступному.

Нехай кількість випробувань  необмежено зростає, але так, щоб її добуток на ймовірність появи події A в кожному випробуванні, тобто , залишався скінченою величиною порядку одиниці. Це передбачає дуже мале значення ймовірності , отже розглядаються дуже рідкі події та дуже довгі серії випробувань. При формалізації відзначених умов у формулі Бернуллі (1) можна перейти до границі

або остаточно отримати формулу Пуассона для ймовірності появи  разів дуже рідкої події A у практично нескінченних випробуваннях

Розподіл випадкової величина  за цією формулою називається законом Пуассона (законом рідкісних подій). Число l називається параметром розподілу. Цей закон можна подати у вигляді:

Таблиця 5

x 0 1 k
p

e-l

le-l

Розглянемо типову задачу, що приводить до розподілу Пуассона. Нехай подія А означає відмову складного пристрою протягом малого проміжку часу. Причиною відмови є вихід з ладу будь-якої деталі. Режим роботи пристрою не змінюється з часом, відмова окремих деталей відбувається незалежно одна від одної, причому за одиницю часу "в середньому" відбувається l відмовлень.

При цих допущеннях з великим ступенем точності виконуються такі умови:

1. Ймовірність появи відмови на проміжку часу (0, Т) така сама, як і на задовільному проміжку довжиною T (t,t+T).

2. Появи відмовлень на проміжках часу, що не перекриваються, незалежні.

Ймовірність появи відмовлення за нескінченно малий проміжок часу визначається за формулою:

р(А)=l Dt+o(Dt), Dt®0.

4. Імовірність появи більше однієї відмови є о(Dt), Dt®0.

Розіб'ємо інтервал (t,t+T) на n рівних частин .

Розглядатимемо реєстрацію відмови як окреме випробування

При цьому приходимо до розподілу Пуассона для кількості відмовлень за час Т

Геометричний закон розподілу. Проводиться серія випробувань до першої появи події А. Ймовірність появи події А в кожному випробуванні дорівнює р і не залежить від інших випробувань.

Як випадкову величину  розглядатимемо кількість проведених випробувань, необхідних для першої появи події А. Очевидно, що закон розподілу цієї випадкової величини можна подати таблицею:

Таблиця 6

x 1 2 3 k
P P qp

q2p

qk-1p


Информация о работе «Випадкова величина»
Раздел: Математика
Количество знаков с пробелами: 7934
Количество таблиц: 6
Количество изображений: 12

Похожие работы

Скачать
15415
0
2

... рівність нормування . Ймовірність попадання випадкової точки  у довільну область (рис.1.3) обчислюється за формулою ,(1.7) яка одразу слідує з означення подвійного інтеграла Приклад 1.5. Система випадкових величин  задана густиною сумісного розподілу . Знайти ймовірність попадання випадкової точки у прямокутник з вершинами , ,,. Розв’язування. За формулою (1.7) . . ...

Скачать
19869
2
1

... ідністю варіювати значення ціни як безперервної випадкової величини. З курсу математичної статистики відомо, що математичне очікування нормально розподіленої випадкової величини можна представити у вигляді: (1.1) Практичне застосування даної формули при оцінці ризику в ціноутворенні вимагає її спрощення. Не утрудняючи читача відомими [1,3], але громіздкими перетвореннями одержуємо: ...

Скачать
10846
0
5

... вибірка із  незалежних реалізацій БВВ , яка в подальшому використовується для побудови ВЕ із необхідними ймовірнісними характеристиками. При моделюванні на ЕОМ складних ВЕ, зокрема, випадкової величини (ВВ) або випадкового процесу (ВП) з заданими ймовірнісними характеристиками розглядається складний випадковий експеримент, що полягає в проведенні  раз описаного вище найпростішого експерименту. ...

Скачать
5402
1
4

... , . . Для опису зв'язків, що існують між проекціями випадкового вектора (x,h), крім коваріації  можна використовувати числові характеристики умовних законів розподілу , . Умовним середнім значенням  і умовною дисперсією  випадкової величини x за умови h =y називаються величини: , . Аналогічно визначаються характеристики  і . Для опису випадкового вектора також вводять початкові і ...

0 комментариев


Наверх