6. Расчет асимметрии и эксцесса

 

Асимметрия – отношение центрального момента 3-го порядка к кубу среднего квадратического отклонения.

, где

Эксцесс – характеристика «крутости» рассматриваемой случайной величины.

, где

Значение ХВ, s вычисляем по формулам:

,

где С – Ложный нуль (варианта, которая имеет наибольшую частоту).

,

где h – шаг (разность между двумя соседними вариантами);

(условный момент второго порядка);

(условный момент первого порядка);

(условная варианта).

Расчеты занесем в таблицу 7:


Xi

Ni

Ui

XB

M1

M2

s m3 m4

AS

EK

-805 1 -2,73 -684,67 0,30 1,06 23,97 3433,28 4193007,72 0,25 12,71
-780,6 1 -2,11
-756,2 4 -1,49
-731,8 7 -0,87
-707,4 26 -0,25
-683 33 0,37
-658,6 14 0,99
-634,2 8 1,61
-609,8 3 2,23
-585,4 3 2,85

Вывод:

Т.к. асимметрия положительна то ‘длинная часть’ кривой распределения расположена справа от математического ожидания или мода.

Т.к. Эксцесс больше нуля, то кривая распределения имеет более высокую и ‘острую’ вершину, чем нормальная кривая.



7. Построение доверительного интервала для математического ожидания и среднего квадратического отклонения

Доверительный интервал для математического ожидания (с вероятностью g) находят как:

 (7.1)

где n – объем выборки;

tg – случайная величина имеющее распределение Стьюдента находим по приложению 1.

s – исправленное среднее квадратическое отклонение;

– выборочное среднее;

Найдем интервал:

по приложению 1 находим tg= 1.984 при g = 0.95 и n = 100;

=-684,67; s = 38,19;

Получаем

-692,25<a<-677.09

Доверительный интервал для среднего квадратического отклонения

(с надежностью g) находят как:

 при q<1 (7.2)

 при q>1 (7.3)

где q находят по приложению 2, по заданным n и g;

Исходя из приложения 2, n = 100 и g = 0.95 находим q=0.143;

Поэтому интервал находим по формуле (7.2):

38.19(1-0.143)<<38.19(1+0.143) 35,58(1+0.143)

 

32.73 <  < 43.65

Вывод:

Итак, с надежностью 0,95 неизвестное математическое ожидание ‘а’ находится в доверительном интервале -692,25<a<-677.09, а неизвестное среднее квадратическое отклонение ‘’ находиться в доверительном интервале 32.73 <  < 43.65.



Вывод

Для представления генеральной совокупности я исследовала выборку, которая имеет объём 100 элементов.

Я нашла:

размах варьирования R=244;

среднеарифметическое значение статистического ряда =-684,67;

несмещенную оценку генеральной дисперсии s2=1458,99;

среднее квадратическое отклонение s=38,19;

медиану МВ=-689 и коэффициент вариации V= 5,58%.

С надежностью 0.95 оценил математическое ожидание в интервале

-692,25< а < -677,09

и среднее квадратическое отклонение в интервале

32,73 <  < 43,65

Выборка имеет варианты x = -731, x = -703, x = -701, x = -700, x = -697, x = -689, x = -686, x = -681, x = -667, которые встречаются 3 раза.

На рис. 1 построила гистограмму и полигон относительных частот. По рис. 1 можно выдвинуть гипотезу о нормальном распределении генеральной совокупности.

После проверки гипотезы о нормальном распределении с помощью критерия Пирсона при a=0.05, я отвергла ее. Из этого следует, что расхождения между практическими и теоретическими частотами значимо.

Асимметрия as=0,25. Из этого следует, что правое крыло функции более вытянуто относительно ее моды.

Эксцесс ek=12,71. Из-за того, что у эксцесса положительный знак, эмпирическая функция распределения острее по сравнению с теоретическим распределением.


Список литературы

1.  Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. М.: Высшая школа, 2001.

2.  Гмурман В.Е. Теория вероятностей и математическая статистика.

М.: Высшая школа, 2001.


Информация о работе «Методика обработки экспериментальных данных»
Раздел: Математика
Количество знаков с пробелами: 11726
Количество таблиц: 8
Количество изображений: 4

Похожие работы

Скачать
28659
0
0

... называется группа упорядоченных по величине значений признака, заменяемая в процессе расчетов средним значением. 2. Методы вторичной статистической обработки результатов эксперимента С помощью вторичных методов статистической обработки экспериментальных данных непосредственно проверяются, доказываются или опровергаются гипотезы, связанные с экспериментом. Эти методы, как правило, сложнее, ...

Скачать
10669
1
0

... В.Ю. Геометрическое представление данных психологических исследований. – М.: Наука. – 1990. 8.         Лакин Г.Ф. Биометрия. – М.: Высшая школа. – 1973. – 343 с. 9.         Лбов Г.С. Методы обработки разнотипных данных. – М.: Наука. – 1981. 10.       Математические методы в исследованиях индивидуальной и групповой деятельности п/ред. Крылова В.Ю. – М.: Наука. – 1990. 11.       Мацкевич И.П., ...

Скачать
140975
39
36

... отпуска может быть на 10–20оС ниже, а его продолжительность на 20–25% меньше, чем первого отпуска. Охлаждение после отпуска проводится на воздухе. 1.1.5 Влияние термической обработки на свойства штамповых сталей Служебные свойства штампового инструмента и его стойкость в значительной степени определяются соответствующим назначением марки стали, ее термообработкой и условиями эксплуатации ...

Скачать
51291
3
14

... силы взаимодействия между рыбой и рабочими органами машин, поскольку изменяется площадь контакта, обусловливающая силы трения. До настоящего времени структурно-механические характеристики в основном оцениваются органолептическим методом. Рыбу сдавливают пальцами и оценивают ее консистенцию. Не достатком такого метода оценки структурно-механических характеристик мышечной ткани является его ...

0 комментариев


Наверх