1.1.2 Вплив структури поверхневих шарів на їхню зносостійкість у процес ренію вузлів АНТ
Технологічні методи зниження інтенсивності зношування спрямовані на досягнення оптимальної топографії поверхні тертя, забезпечення низького опору зрушенню на границі роздягнула тертьових тіл і поліпшення структури поверхневого шару тіла, що зношується, формування оптимальної топографії. Для кожного вузла тертя й Певних режимів його про експлуатацію характерна своя оптимальна топографія поверхонь, що сполучаються, при якій спостерігається мінімальна інтенсивність зношування. Вона встановлюється в процесі приробляння незалежно від того, яка вихідна мікро геометрія була отримана технологічним шляхом. Чим ближче вихідна мікро геометрія до рівноважної, тем менше період приробітки. Оскільки під час приробляння спостерігається максимальне зношування, необхідно фінішну обробку деталей проводити так щоб вихідна шорсткість поверхні була можливо близької до рівноважної. Опромінення потоками енергії високої щільності. Для підвищення зносостійкості деталей використовують лазерне легування тонких поверхневих шарів металів і сплавів, локальне поверхневе загартування сталей, лазерне зміцнення титанових сплавів шляхом оксидування поверхневого зламування й зниження їх на водорожування в процесі тертя. До цієї групи можна віднести іонне бомбардування, обробку електронним променем, радіаційне опромінення (застосовується для деталей з поліетилена) іонну імплантацію, іонно-променеве перемішування. Хіміко-термічна обробка поверхонь. Цей метод дозволяє змінювати структуру й властивості поверхневого шару металів шляхом насичення його атомами легуючих елементів у процесі теплової обробки в хімічно активному середовищі. Залежно від виду легуючого елемента розрізняють цементацію, азотування, сульфоціанування силіціювання, оксидування, фосфатування, сульфидирование, хромування й інші приймання підвищення зносостійкості металів.
Матеріалознавські методи
Ці методи спрямовані на створення нових зносостійких матеріалів, оптимальна комбінація механічних, хімічних і теплофізичних властивостей яких забезпечує низькі коефіцієнт тертя й інтенсивність зношування при необхідних режимах навантаження. Різноманіття конструкції вузлів тертя, умов експлуатації й вимог до експлуатаційних, технічним і економічним характеристикам триботехнічних матеріалів привело до створення великої кількості методів їх одержання й зміцнення.
Досить сказати, що далеко не повний перелік технічних характеристик, яким повинен задовольняти матеріал, включає;
• забезпечення правила позитивного градієнта механічних
властивостей по глибині;
• здатність матеріалу локалізувати контактні деформації в можливо більш тонкому поверхневому шарі;
• здатність матеріалу створювати на поверхні тертя й безупинно відновлювати в процесі зношування пластичну плівку. що володіє низьким опором зрушенню й високим опором руйнуванню при багаторазовому знакозмінному деформуванні;
• сумісність із матеріалом контр тіла й мастильним матеріалом. низька адгезія до контр тілу й висока змочуваність мастильною речовиною;
• високі несуча здатність, теплопровідність і теплостійкість;
• низький коефіцієнт теплового розширення;
• стабільність і низькі значення коефіцієнта тертя й інтенсивності зношування;
• гарна приробітка і технологічність.
Оптимізація макроструктури матеріалів. Мікроструктура, або конструкція, матеріалу відіграє досить важливу роль у забезпеченні довговічності вузла тертя. Тому залежно від режимів навантаження використовують матеріали блокові, стрічкові, багатошарові, армовані й із плавно мінливими по товщині властивостями. Керування мікроструктурою матеріалів. Його досить великий матеріалознавський напрямок поліпшення триботехнічних властивостей матеріалів. Воно засноване на залежності зносостійкості й механічних властивостей металів від розміру зерна, кристалографічної текстури, а для полімерів від ступеня кристалічності, розмірів і типу надмолекулярних утворів. Зміна мікроструктури матеріалів досягається за допомогою термомеханічної обробки, вибору режимів формування деталі, впливу потоків енергії високої щільності, уведення активних наповнювачів і модифікаторів.
Вибір і модифікація сполучного. При одержанні деталей трибосистем з композитів важливу роль відіграє вибір сполучного, структура й властивості якого визначають припустимі режими експлуатації композита в цілому. У якості сполучного застосовують метали, полімерні матеріали, кам'яновугільний пек. Матеріали на основі полімерної матриці мають високі антифрикційні властивості й здатні експлуатуватися при середніх навантаженнях і швидкостях ковзання. Найбільше широко використовують поліаміди, фторопласти, полиацетали, фенодні, епоксидні й кремнієорганічні смоли, каучуки й поліуретани. Останнім часом велика увага приділяється полімерам "нового покоління" поліефір- ефиркетонам і поліакрил-ефиркетонам, що володіють високою термостійкістю й низьким коефіцієнтом тертя.
0 комментариев